OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 25 No. 4 2023 References 1. Krishnan R.S., Srinivasan R., Devanarayanan S. Theory of thermal expansion of crystals. Thermal expansion of crystals. Pergamon Press, 1979, ch. 3, pp. 54–104. DOI: 10.1016/B978-0-08-021405-4.50008-1. 2. Roy R., Agrawal D.K., McKinstry H.A. Very low thermal expansion coefficient materials. Annual Review of Material Science, 1989, vol. 19, pp. 59–81. DOI: 10.1146/annurev.ms.19.080189.000423. 3. Padture N.P., Gell M., Jordan E.H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, vol. 296, pp. 280–284. DOI: 10.1126/science.1068609. 4. Wang C., Yang J., Huang W., Zhang T., Yan D., Pu J., Chi B., Li J. Numerical simulation and analysis of thermal stress distributions for a planar solid oxide fuel cell stack with external manifold structure. International Journal of Hydrogen Energy, 2018, vol. 43, pp. 20900–20910. DOI: 10.1016/j.ijhydene.2018.08.076. 5. Bejarano M.L., Valarezo A., Lara-Curzio E., Sampath S. Dilation behavior of thermal spray coatings. Journal of Thermal Spray Technology, 2019, vol. 28, pp. 1851–1866. DOI: 10.1007/s11666-019-00927-4. 6. Tao S., Yang J., Shao F., Zhao H., Zhong X., Zhuang Y., Sheng J., Ni J., Li Q., Tao S. Atmospheric plasma sprayed thick thermal barrier coatings: Microstructure, thermal shock behaviors and failure mechanism. Engineering Failure Analysis, 2022, vol. 131. DOI: 10.1016/j.engfailanal.2021.105819. 7. Kustov S., Golyandin S., Sapozhnikov K., Vincent A., Maire E., Lormand G. Structural and transient internal friction due to thermal expansion mismatch between matrix and reinforcement in Al-SiC particulate composite. Materials Science and Engineering: A, 2001, vol. 313, pp. 218–226. DOI: 10.1016/S0921-5093(01)00971-6. 8. Khor K.A., Dong Z.L., Gu Y.W. Plasma sprayed functionally graded thermal barrier coatings. Materials Letters, 1999, vol. 38, pp. 437–444. DOI: 10.1016/S0167-577X(98)00203-1. 9. Öztürk B., Topcu A., Cora Ö.N. Influence of processing parameters on the porosity, thermal expansion, and oxidation behavior of consolidated Fe22Cr stainless steel powder. Powder Technology, 2021, vol. 382, pp. 199–207. DOI: 10.1016/j.powtec.2020.12.072. 10. Loghman-Estarki M.R., Shoja Razavi R., Edris H., Pourbafrany M., Jamali H., Ghasemi R. Life time of new SYSZ thermal barrier coatings produced by plasma spraying method under thermal shock test and high temperature treatment. Ceramics International, 2014, vol. 40, pp. 1405–1414. DOI: 10.1016/j.ceramint.2013.07.023. 11. Khan M.A., Anand A.V., Duraiselvam M., Rao K.S., Singh R.A., Jayalakshmi S. Thermal shock resistance and thermal insulation capability of laser-glazed functionally graded lanthanum magnesium hexaluminate/yttriastabilised zirconia thermal barrier coating. Materials (Basel), 2021, vol. 14. DOI: 10.3390/ma14143865. 12. Purushotham N., Parthasarathi N.L., Babu P.S., Sivakumar G., Rajasekaran B. Effect of thermal expansion on the high temperature wear resistance of Ni-20%Cr detonation spray coating on IN718 substrate. Surface and Coatings Technology, 2023, vol. 462. DOI: 10.1016/j.surfcoat.2023.129490. 13. Kaschel F.R., Vijayaraghavan R.K., Shmeliov A., McCarthy E.K., Canavan M., McNally P.J., Dowling D.P., Nicolosi V., Celikin M. Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4V via in situ high temperature XRD and TEM analyses. Acta Materialia, 2020, vol. 188, pp. 720–732. DOI: 10.1016/j.actamat.2020.02.056. 14. Meng Q.-K., Xu J.-D., Li H., Zhao C.-H., Qi J.-Q., Wei F.-X., Sui Y.-W., Ma W. Phase transformations and mechanical properties of a Ti36Nb5Zr alloy subjected to thermomechanical treatments. Rare Metals, 2022, vol. 41, pp. 209–217. DOI: 10.1007/s12598-021-01744-x. 15. ShimanO.V., SkipponT., Tulk E., DaymondM.R. Strain evolution in Zr-2.5wt%Nb observedwith synchrotron X-ray diffraction. Materials Characterization, 2018, vol. 146, pp. 35–46. DOI: 10.1016/j.matchar.2018.09.022. 16. Qian L.H., Wang S.C., Zhao Y.H., Lu K. Microstrain effect on thermal properties of nanocrystalline Cu. Acta Materialia, 2002, vol. 50, pp. 3425–3434. DOI: 10.1016/S1359-6454(02)00155-6. 17. DaymondM.R. Internal stresses in deformed crystalline aggregates. Reviews inMineralogy and Geochemistry, 2006, vol. 63, pp. 427–458. DOI: 10.2138/rmg.2006.63.16. 18. Repper J., Hofmann M., Krempaszky C., Regener B., Berhuber E., Petry W., Werner E. Effect of macroscopic relaxation on residual stress analysis by diffraction methods. Journal of Applied Physics, 2012, vol. 112, p. 64906. DOI: 10.1063/1.4752877. 19. Fujita F.E. A statistical thermodynamic theory of pre-martensitic tweed structure. Materials Science and Engineering: A, 1990, vol. 127, pp. 243–248. DOI: 10.1016/0921-5093(90)90315-T. 20. Londoño-Restrepo S.M., Herrera-Lara M., Bernal-Alvarez L.R., Rivera-Muñoz E.M., Rodriguez-García M.E. In situ XRD study of the crystal size transition of hydroxyapatite from swine bone. Ceramics International, 2020, vol. 46, pp. 24454–24461. DOI: 10.1016/j.ceramint.2020.06.230.
RkJQdWJsaXNoZXIy MTk0ODM1