Numerical study of titanium alloy high-velocity solid particle erosion

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 282 MATERIAL SCIENCE 2. Hadziahmetovic H.D., Hodzic N., Kahrimanovic D., Dzaferovic E. Computational fl uid dynamics (CFD) based erosion prediction model in elbows. Tehnicki vjesnik = Technical Gazette, 2014, vol. 21 (2), pp. 275–282. 3. Sun K., Lu L., Jin H. Modeling and numerical analysis of the solid particle erosion in curved ducts. Abstract and Applied Analysis, 2013, vol. 2013, art. 245074. DOI: 10.1155/2013/245074. 4. Finnie I. Erosion of surfaces by solid particles. Wear, 1960, vol. 3 (2), pp. 87–103. DOI: 10.1016/00431648(60)90055-7. 5. Grant G., Ball R., Tabakoff W. An experimental study of the erosion rebound characteristics of high-speed particles impacting a stationary specimen. Report No. 73-36. Cincinnati University Ohio, Department of Aerospace Engineering, 1973. 6. Bitter J.G.A. A study of erosion phenomena: Part I. Wear, 1963, vol. 6 (1), pp. 5–21. DOI: 10.1016/00431648(63)90003-6. 7. Bitter J.G.A. A study of erosion phenomena: Part II. Wear, 1963, vol. 6 (3), pp. 169–190. DOI: 10.1016/00431648(63)90073-5. 8. Strokach E.A., Kozhevnikov G.D., Pozhidaev A.A. Chislennoe modelirovanie protsessa erodirovaniya tverdymi chastitsami v gazovom potoke (obzor) [Numerical simulation of solid particle erosion in a gaseous fl ow (review)]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika = PNRPU Aerospace Engineering Bulletin, 2021, no. 67, pp. 56–69. DOI: 10.15593.2224-9982.2021.67.06. 9. Tarodiya R., Levy A. Surface erosion due to particle-surface interactions – A review. Powder Technology, 2021, vol. 387, pp. 527–559. DOI: 10.1016/j.powtec.2021.04.055. 10. Krella A. Resistance of PVD coatings to erosive and wear processes: A review. Coatings, 2020, vol. 10, p. 921. DOI: 10.3390/coatings10100921. 11. Fardan A., Berndt C.C., Ahmed R. Numerical modelling of particle impact and residual stresses in cold sprayed coatings: A review. Surface and Coatings Technology, 2021, vol. 409. DOI: 10.1016/j.surfcoat.2021.126835. 12. Bonu V., Barshilia H.C. High-temperature solid particle erosion of aerospace components: its mitigation using advanced nanostructured coating technologies. Coatings, 2022, vol. 12, p. 1979. DOI: 10.3390/coatings12121979. 13. Taherkhani B., Anaraki A.P., Kadkhodapour J., Farahani N.K., Tu H. Erosion due to solid particle impact on the turbine blade: experiment and simulation. Journal of Failure Analysis and Prevention, 2019, vol. 19 (6), pp. 1739–1744. DOI: 10.1007/s11668-019-00775-y. 14. Khoddami A.S., Salimi-Majd D., Mohammadi B. Finite element and experimental investigation of multiple solid particle erosion on Ti–6Al–4V titanium alloy coated by multilayer wear-resistant coating. Surface and Coatings Technology, 2019, vol. 372 (2), pp. 173–189. DOI: 10.1016/j.surfcoat.2019.05.042. 15. Farokhipour A., Mansoori Z., Saff ar-Avval M., Ahmadi G. Numerical modeling of sand particle erosion at return bends in gas-particle two-phase fl ow. Scientia Iranica, 2018, vol. 25 (6), pp. 3231–3242. DOI: 10.24200/ sci.2018.50801.1871. 16. Peng S., Chen Q., Shan C., Wang D. Numerical analysis of particle erosion in the rectifying plate system during shale gas extraction. Energy Science & Engineering, 2019, vol. 7 (5), pp. 1838–1851. DOI: 10.1002/ese3.395. 17. Anielli D., Borello D., Rispoli F., Salvagni A., Venturini P. Prediction of particle erosion in the internal cooling channels of a turbine blade. 11th European Turbomachinery Conference, 23 March 2015, Madrid, Spain, pp. 1–11. 18. Campos-Amezcua A., Mazur Z., Gallegos-Muñoz A., Romero-Colmenero A., Manuel Riesco-Ávila J., Martín Medina-Flores J. Numerical study of erosion due to solid particles in steam turbine blades. Numerical Heat Transfer, Part A: Applications, 2008, vol. 53 (6), pp. 667–684. DOI: 10.1080/10407780701453933. 19. Arabnejad H. Development of erosion equations for solid particle and liquid droplet impact. Ph.D. diss. Department of Mechanical Engineering, The University of Tulsa, 2015. 161 p. 20. Mansouri A. A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand fl ows. Ph.D. diss. Department of Mechanical Engineering, The University of Tulsa, 2016. 217 p. 21. Liu Y., Cao Z., Yuan J., Sun X., Su H., Wang L. Eff ect of morphology, impact velocity and angle of the CaOMgO-Al2O3-SiO2 (CMAS) particle on the erosion behavior of thermal barrier coatings (TBCs): a fi nite element simulation study. Coatings, 2022, vol. 12 (5), p. 576. DOI: 10.3390/coatings12050576. 22. Ma Z.S., Fu L.H., Yang L., Zhou Y.C., Lu C. Finite element simulations on erosion and crack propagation in thermal barrier coatings. High Temperature Materials and Processes, 2015, vol. 34 (4), pp. 387–393. DOI: 10.1515/ htmp-2014-0068. 23. Liu Z.G., Wan S., Nguyen V.B., Zhang Y.W. Finite element analysis of erosive wear for off shore structure. 13th International Conference on Fracture, 16–21 June 2013, Beijing, China, pp. 461–468.

RkJQdWJsaXNoZXIy MTk0ODM1