OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 25 No. 4 2023 14. Khoddami A.S., Salimi-Majd D., Mohammadi B. Finite element and experimental investigation of multiple solid particle erosion on Ti–6Al–4V titanium alloy coated by multilayer wear-resistant coating. Surface and Coatings Technology, 2019, vol. 372 (2), pp. 173–189. DOI: 10.1016/j.surfcoat.2019.05.042. 15. Farokhipour A., Mansoori Z., Saffar-Avval M., Ahmadi G. Numerical modeling of sand particle erosion at return bends in gas-particle two-phase flow. Scientia Iranica, 2018, vol. 25 (6), pp. 3231–3242. DOI: 10.24200/ sci.2018.50801.1871. 16. Peng S., Chen Q., Shan C., Wang D. Numerical analysis of particle erosion in the rectifying plate system during shale gas extraction. Energy Science & Engineering, 2019, vol. 7 (5), pp. 1838–1851. DOI: 10.1002/ese3.395. 17. Anielli D., Borello D., Rispoli F., Salvagni A., Venturini P. Prediction of particle erosion in the internal cooling channels of a turbine blade. 11th European Turbomachinery Conference, 23 March 2015, Madrid, Spain, pp. 1–11. 18. Campos-Amezcua A., Mazur Z., Gallegos-Muñoz A., Romero-Colmenero A., Manuel Riesco-Ávila J., Martín Medina-Flores J. Numerical study of erosion due to solid particles in steam turbine blades. Numerical Heat Transfer, Part A: Applications, 2008, vol. 53 (6), pp. 667–684. DOI: 10.1080/10407780701453933. 19. Arabnejad H. Development of erosion equations for solid particle and liquid droplet impact. Ph.D. diss. Department of Mechanical Engineering, The University of Tulsa, 2015. 161 p. 20. Mansouri A. A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows. Ph.D. diss. Department of Mechanical Engineering, The University of Tulsa, 2016. 217 p. 21. Liu Y., Cao Z., Yuan J., Sun X., Su H., Wang L. Effect of morphology, impact velocity and angle of the CaOMgO-Al2O3-SiO2 (CMAS) particle on the erosion behavior of thermal barrier coatings (TBCs): a finite element simulation study. Coatings, 2022, vol. 12 (5), p. 576. DOI: 10.3390/coatings12050576. 22. Ma Z.S., Fu L.H., Yang L., Zhou Y.C., Lu C. Finite element simulations on erosion and crack propagation in thermal barrier coatings. High Temperature Materials and Processes, 2015, vol. 34 (4), pp. 387–393. DOI: 10.1515/ htmp-2014-0068. 23. Liu Z.G., Wan S., Nguyen V.B., Zhang Y.W. Finite element analysis of erosive wear for offshore structure. 13th International Conference on Fracture, 16–21 June 2013, Beijing, China, pp. 461–468. 24. Oviedo F., Valarezo A. Residual stress in high-velocity impact coatings: parametric finite element analysis approach. Journal of Thermal Spray Technology, 2020, vol. 29 (6), pp. 1268–1288. DOI: 10.1007/s11666-02001026-5. 25. Bing Wu, Fengfang Wu, Jinjie Li. Finite element modeling of correlating mechanical properties with erosion wear rate. Proceedings of the 2018 3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018), June 2018. Atlantis press, 2018, pp. 273–276. DOI: 10.2991/eame-18.2018.57. 26. Singh P.K., HotaA.R., Mishra S.B. Finite element modelling of erosion parameters in Bing boiler components. Asian Journal of Engineering and Applied Technology, 2018, vol. 7 (2), pp. 12–16. DOI: 10.51983/ajeat-2018.7.2.964. 27. Dong X., Li Z., Feng L., Sun Z., Fan C. Modeling, simulation, and analysis of the impact(s) of single angular-type particles on ductile surfaces using smoothed particle hydrodynamics. Powder Technology, 2017, vol. 318, pp. 363–382. DOI: 10.1016/j.powtec.2017.06.011. 28. Leguizamón S., Jahanbakhsh E., Alimirzazadeh S., Maertens A., Avellan F. FVPM numerical simulation of the effect of particle shape and elasticity on impact erosion. Wear, 2019, vol. 430–431, pp. 108–119. DOI: 10.1016/j. wear.2019.04.023. 29. Menter F., Lechner R., Matyushenko A. Best practice: generalized K-Ω two-equation turbulence model in ANSYS CFD (GEKO). Technical Report ANSYS. Nurnberg, Germany, 2019. 32 p. 30. ANSYS Fluent Theory Guide. Canonsburg, PA, ANSYS Inc, 2019. 1080 p. 31. Menter F.R., MatyushenkoA., Lechner R. Development of a generalized K-ω two-equation turbulence model. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018, vol. 142, pp. 101–109. DOI: 10.1007/9783-030-25253-3_10. 32. Strokach E., Zhukov V., Borovik I., Sternin A., Haidn O.J. Simulation of a GOx-gch4 rocket combustor and the effect of the GEKO turbulence model coefficients. Aerospace, 2021, vol. 8 (11), p. 341. DOI: 10.3390/aerospace8110341. 33. Pozhidaev A., Kozhevnikov G., Strokach E. Numerical study of turbulence model effect on solid particle erosion in gaseous flow. AIP Conference Proceedings, 2023, vol. 2549 (1), p. 030003. DOI: 10.1063/5.0130489. 34. Oka Y.I., Ohnogi H., Hosokawa T., Matsumura M. The impact angle dependence of erosion damage caused by solid particle impact. Wear, 1997, vol. 203–204, pp. 573–579. DOI: 10.1016/s0043-1648(96)07430-3. 35. Haugen K., Kvernvold O., Ronold A., Sandberg R. Sand erosion of wear resistant materials: Erosion in choke valves. Wear, 1995, vol. 186–187, pp. 179–188. DOI: 10.1016/0043-1648(95)07158-X.
RkJQdWJsaXNoZXIy MTk0ODM1