Investigation of changes in geometrical parameters of GMAW surfaced specimens under the influence of longitudinal magnetic field on electric arc

OBRABOTKAMETALLOV Vol. 26 No. 1 2024 TECHNOLOGY References 1. Kurakin A.I., Strukov I.G., Skoblikov Ya.P., Karpov V.M., Efi mov E.I. Prognozirovanie geometrii sloya pri dugovom additivnom proizvodstve P-GMAW iz alyuminievykh splavov [Prediction of bead layer geometry in P-GMAW wire arc additive manufacturing of aluminium alloys]. Morskie intellektual’nye tekhnologii = Marine Intellectual Technologies, 2023, no. 2-1 (60), pp. 245–252. DOI: 10.37220/MIT.2023.60.2.030. 2. Oskolkov A.A., Matveev E.V., Bezukladnikov I.I., Trushnikov D.N., Krotova E.L. Peredovye tekhnologii additivnogo proizvodstva metallicheskikh izdelii [Advanced technologies for additive manufacturing of metal product]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin PNRPU. Mechanical engineering, materials science, 2018, vol. 20, no. 3, pp. 90–105. DOI: 10.15593/2224-9877/2018.3.11. 3. Jatmoko, Hanifah A., Pratama M.A., Rohimsyah F.M. Study of the eff ect GMAW and SMAW welding combination with WAAM method. SPECTA Journal of Technology, 2023, vol. 7 (2), pp. 549–555. DOI: 10.35718/ specta.v7i2.938. 4. Jafari D., Vaneker T., Gibson I. Wire and arc additive manufacturing: opportunities and challenges to control the quality and accuracy of manufactured parts. Materials & Design, 2021, vol. 202, p. 109471. DOI: 10.1016/j. matdes.2021.109471. 5. Henckell P., Gierth M., Ali Y., Reimann J., Bergmann J.P. Reduction of energy input in wire arc additive manufacturing (WAAM) with gas metal arc welding (GMAW). Materials, 2020, vol. 13 (11), p. 2491. DOI: 10.3390/ ma13112491. 6. Razmyshlyaev A.D., Ageeva M.V., Lavrova E.V. Izmel’chenie struktury metalla pri dugovoi naplavke pod vozdeistviem prodol’nogo magnitnogo polya [Refi nement of metal structure in arc surfacing under the eff ect of longitudinal magnetic fi eld]. Avtomaticheskaya svarka = Automatic Welding, 2019, no. 2, pp. 25–28. DOI: 10.15407/ as2019.02.03. (In Russian). 7. Razmyshljaev A.D., Mironova M.V., Leshchenko A.I. Povyshenie kachestva stykovykh soedinenii pri dugovoi svarke v prodol’nom magnitnom pole [Quality increase of butt joints at arc welding in longitudinal magnetic fi eld]. Vestnik Priazovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki = Bulletin of the Azov State Technical University. Series: Technical Sciences, 2012, no. 24, pp. 190–196. 8. Mironova M.V. Vliyanie induktsii prodol’nogo magnitnogo polya na proplavlenie osnovnogo metalla pri dugovoi naplavke [Infl uence of longitudinal magnetic fi eld induction on the base metal penetration at arc surfacing]. Vestnik Priazovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki = Bulletin of the Azov State Technical University. Series: Technical Sciences, 2012, no. 25, pp. 141–146. 9. Chernykh A.V. Osobennosti plavleniya i dvizheniya elektrodnogo metalla pri dugovoi svarke vo vneshnem postoyannom prodol’nom magnitnom pole [Pecularities of melting and movement of electrode metal at arc welding in external constant longitudinal magnetic fi eld]. Nauchnyi vestnik Voronezhskogo gosudarstvennogo arkhitekturnostroitel’nogo universiteta. Stroitel’stvo i arkhitektura = Scientifi c Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture, 2012, no. 4 (28), pp. 103–113. 10. RazmyshlyaevA.D., Deli A.A., Mironova M.V. Vliyanie prodol’nogo magnitnogo polya na proizvoditel’nost’ rasplavleniya provoloki pri elektrodugovoi naplavke pod fl yusom [The eff ect of a longitudinal magnetic fi eld on the melting performance of wire during submerged arc welding]. Avtomaticheskaya svarka = Automatic Welding, 2007, no. 6 (650), pp. 31–35. 11. Sharma P., Chattopadhyaya S., Singh N., Kumar A., Sharma S., Li C., Kumar V., Wojciechowski S., Krolczyk G., Eldin S.M. Recent developments in the design, development, and analysis of the infl uence of external magnetic-fi eld on gas-metal arc welding of non-ferrous alloys: review on optimization of arc-structure to enhance the morphology, and mechanical properties of welded joints for automotive applications. Heliyon, 2022, vol. 8 (12), p. e11812. DOI: 10.1016/j.heliyon.2022.e11812. 12. Curiel F.F., García R., López V.H., García M.A., Contreras A., García M.A. The eff ect of applying magnetic fi elds during welding AISI-304 stainless steel on stress corrosion cracking. International Journal of Electrochemical Science, 2021, vol. 16 (3), p. 210338. DOI: 10.20964/2021.03.31. 13. Xiao L., Fan D., Huang J., Tashiro S., Tanaka M. 3D numerical study of external axial magnetic fi eld-controlled high-current GMAW metal transfer behavior. Materials, 2020, vol. 13, p. 5792. DOI: 10.3390/ma13245792. 14. Rosado-Carrasco J., Krupp U., López V., Giertler A., Garcia-Rentería M., González-Sánchez J. Eff ect of a magnetic fi eld applied during fusion welding on the fatigue damage of 2205 duplex stainless steel joints. International Journal of Fatigue, 2018, vol. 121. DOI: 10.1016/j.ijfatigue.2018.12.022.

RkJQdWJsaXNoZXIy MTk0ODM1