Optimization of selective laser melting modes of powder composition of the AlSiMg system

OBRABOTKAMETALLOV TECHNOLOGY Vol. 26 No. 1 2024 3. Brice C.A., Tayon W.A., Newman J.A., Kral M.V., Bishop C., Sokolova A. Eff ect of compositional changes on microstructure in additively manufactured aluminum alloy 2139. Materials Characterization, 2018, vol. 143, pp. 50–58. DOI: 10.1016/j.matchar.2018.04.002. 4. Foteinopoulos P., Papacharalampopoulos A., Stavropoulos P. On thermal modeling of additive manufacturing processes. CIRP Journal of Manufacturing Science and Technology, 2018, vol. 20, pp. 66–83. DOI: 10.1016/j. cirpj.2017.09.007. 5. Khimich M.A., Ibragimov E.A., Tolmachev A.I., Saprykina N.A., Saprykin A.A., Sharkeev Y.P. Infl uence of thermal treatment duration on structure and phase composition of additive Co-Cr-Mo alloy samples. Letters on Materials, 2022, vol. 12 (1), pp. 43–48. DOI: 10.22226/2410-3535-2022-1-43-48. 6. Saprykin А.А., Sharkeev Y.P., Saprykina N.А., Ibragimov E.A. The mechanism of forming coagulated particles in selective laser melting of cobalt-chromium-molybdenum powder. Key Engineering Materials, 2020, vol. 839, pp. 79–85. DOI: 10.4028/www.scientifi c.net/KEM.839.79. 7. Karg M.C.H., Ahuja B., Wiesenmayer S., Kuryntsev S.V., Schmidt M. Eff ects of process conditions on the mechanical behavior of aluminum wrought alloy EN AW-2219 (AlCu6Mn) additively manufactured by laser beam melting in powder bed. Micromachines, 2017, vol. 8 (1), p. 11. DOI: 10.3390/mi8010023. 8. Koutny D., Palousek D., Pantelejev L., Hoeller C., Pichler R., Tesicky L., Kaiser J. Infl uence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting. Materials, 2018, vol. 11 (2), p. 298. DOI: 10.3390/ma11020298. 9. Reschetnik W., Brüggemann J.P., Aydinöz M.E., Grydin O., Hoyer K.P., Kullmer G., Richard H.A. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminum alloy. Procedia Structural Integrity, 2016, vol. 2, pp. 3040–3048. DOI: 10.1016/j.prostr.2016.06.380. 10. Martin J.H., Yahata B.D., Hundley J.M., Mayer J.A., Schaedler T., Pollock T.M. 3D printing of high-strength aluminum alloys. Nature, 2017, vol. 549, pp. 365–369. DOI: 10.1038/nature23894. 11. Otani Y., Kusaki Y., Itagaki K., Sasaki S. Microstructure and mechanical properties of 7075 alloy with additional Si fabricated by selective laser melting. Materials Transactions, 2019, vol. 60 (10), pp. 2143–2150. DOI: 10.2320/matertrans.Y-M2019837. 12. Sales R.C., Felipe P., Paradela K.G., Garcao W.J.L., Ferreira A.F. Eff ect of solidifi cation processing parameters and silicon content on the dendritic spacing and hardness in hypoeutectic Al-Si alloys. Materials Research, 2018, vol. 21 (6), p. 8. DOI: 10.1590/1980-5373-mr-2018-0333. 13. Smith P., Cowie J., Weritz J. Registration system for aluminum alloys used in additive manufacturing. Light Metal Age, 2019, vol. 77 (4), pp. 72–75. 14. Moghimian P., Poirié T., Habibnejad-Korayem M., Zavala J.A., Kroeger J., Marion F., Larouche F. Metal powders in additive manufacturing: a review on reusability and recyclability of common titanium, nickel and aluminum alloys. Additive Manufacturing, 2021, vol. 43, p. 102017. DOI: 10.1016/j.addma.2021.102017. 15. Aboulkhair N.T., Simonelli M., Parry L., Ashcroft I., Tuck C., Hague R. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Progress in Materials Science, 2019, vol. 106, p. 100578. DOI: 10.1016/j.pmatsci.2019.100578. 16. Shen H., Rometsch P., Wu X., Huang A. Infl uence of gas fl ow speed on laser plume attenuation and powder bed particle pickup in laser powder bed fusion. Materials Science & Engineering, 2020, vol. 72, pp. 1039–1051. DOI: 10.1007/s11837-020-04020-y. 17. Bian L., Shamsaei N., Usher J.M., eds. Laser-based additive manufacturing of metal parts: modeling, optimization, and control of mechanical properties. Boca Raton, CRC Press, 2017. 328 p. ISBN 9781498739986. 18. Aboulkhair N.T., Everitt N.M., Maskery I., Ashcroft I., Tuck C. Selective laser melting of aluminum alloys. MRS Bulletin, 2017, vol. 42, pp. 311–319. DOI: 10.1557/mrs.2017.63. 19. Thijs L., Kempen K., Kruth J.P., Van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia, 2013, vol. 61, pp. 1809–1819. DOI: 10.1016/j.actamat.2012.11.052. 20. Saprykina N.А., Chebodaeva V.V., Saprykin A.А., Sharkeev Y.P., Ibragimov E.А., Guseva T.S. Synthesis of a three-component aluminum-based alloy by selective laser melting. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 4, pp. 151–164. DOI: 10.17212/19946309-2022-24.4-151-164. 21. Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L. Review of selective laser melting: materials and applications. Applied Physics Reviews, 2015, vol. 2 (4), p. 041101. DOI: 10.1063/1.4935926.

RkJQdWJsaXNoZXIy MTk0ODM1