Features of calculating the cutting temperature during high-speed milling of aluminum alloys without the use of cutting fluid

OBRABOTKAMETALLOV Vol. 26 No. 1 2024 TECHNOLOGY References 1. Wang S.J., Chen X., To S., Ouyang X.B., Liu Q., Liu J.W., Lee W.B. Eff ect of cutting parameters on heat generation in ultra-precision milling of aluminum alloy 6061. International Journal of Advanced Manufacturing Technology, 2015, vol. 80, pp. 1265–1275. DOI: 10.1007/s00170-015-7072-8. 2. Safi ei W., Rahman M.M., Yusoff A.R., Arifi n M.N., TasnimW. Eff ects of SiO2-Al2O3-ZrO2 tri-hybrid nanofl uids on surface roughness and cutting temperature in end milling process of aluminum alloy 6061-T6 using uncoated and coated cutting inserts with minimal quantity lubricant method. Arabian Journal for Science and Engineering, 2021, vol. 46, pp. 7699–7718. DOI: 10.1007/s13369-021-05533-7. 3. Meng X.X., Lin Y.X. Chip morphology and cutting temperature of ADC12 aluminum alloy during high-speed milling. Rare Metals, 2021, vol. 40, pp. 1915–1923. DOI: 10.1007/s12598-020-01486-2. 4. Santos M.C., Machado A.R., Sales W.F., Barrozo M.A.S., Ezugwu E.O. Machining of aluminum alloys: a review. International Journal of Advanced Manufacturing Technology, 2016, vol. 86, pp. 3067–3080. DOI: 10.1007/ s00170-016-8431-9. 5. El-Eskandarany M.S., Aoki K., Sumiyama K., Suzuki K. Cyclic solid-state transformations during ball milling of aluminum zirconium powder and the eff ect of milling speed. Metallurgical and Materials Transactions A, 1999, vol. 30, pp. 1877–1880. DOI: 10.1007/s11661-999-0185-7. 6. Luo H., Wang Yq., Zhang P. Simulation and experimental study of 7A09 aluminum alloy milling under double liquid quenching. Journal of Central South University, 2020, vol. 27, pp. 372–380. DOI: 10.1007/s11771-020-4302-5. 7. Grubyy S.V., Zaicev A.M. Obosnovanie uslovii frezerovaniya karmanov v korpusnykh detalyakh iz alyuminievykh splavov [The provement of the conditions of end mill operation in external panels of the aluminum alloys]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana = Science and Education: scientifi c periodical of the Bauman MSTU, 2014, no. 5, pp. 12–30. DOI: 10.7463/0514.0709770. 8. Chatti S., Laperrière L., Reinhart G., Tolio T., eds. CIRP encyclopedia of production engineering. Berlin, Heidelberg, Springer, 2019. 1832 p. DOI: 10.1007/978-3-662-53120-4. 9. Il A., Chatelain J.F., Lalonde J.F., Balazinski M., Rimpault X. An experimental investigation of the infl uence of cutting parameters on workpiece internal temperature during Al2024-T3 milling. International Journal of Advanced Manufacturing Technology, 2018, vol. 97, pp. 413–426. DOI: 10.1007/s00170-018-1948-3. 10. Grubyy S.V., ZaicevA.M. Issledovanie kontsevykh frez pri frezerovanii korpusnykh detalei iz alyuminievykh splavov [Research of end mills during milling of body parts made of aluminum alloys]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana = Science and Education: scientifi c periodical of the Bauman MSTU, 2013, no. 12, pp. 31–54. DOI: 10.7463/1213.0634375. 11. Ming W., Yu W., Qiu K., An Q., Chen M. Modelling of the temperature distribution based on equivalent heat transfer theory and anisotropic characteristics of honeycomb core during milling of aluminum honeycomb core. International Journal of Advanced Manufacturing Technology, 2021, vol. 115, pp. 2097–2110. DOI: 10.1007/ s00170-021-06943-5. 12. Duan Z., Li C., Ding W., Zhang Y., Yang M., Gao T., Cao H., Xu X., Wang D., Mao C., Li H.N., Kumar G.M., Said Z., Debnath S., Jamil M., Ali H.M. Milling force model for aviation aluminum alloy: academic insight and perspective analysis. Chinese Journal of Mechanical Engineering, 2021, vol. 34, p. 18. DOI: 10.1186/s10033-02100536-9. 13. Bugdayci B., Lazoglu I. Temperature and wear analysis in milling of aerospace grade aluminum alloy Al7050. Production Engineering, 2015, vol. 9, pp. 487–494. DOI: 10.1007/s11740-015-0623-x. 14. Kugultinov S.D., Shchenyatskii A.V., Zhilyaev A.S. Chislennyi analiz vliyaniya uslovii mekhanicheskoi obrabotki na napryazhenno-deformirovannoe sostoyanie krupnogabaritnykh tonkostennykh detalei slozhnoi formy [Numerical analysis of infl uence of mechanical processing conditions on stress-deformed state of large-size thin-wall complex parts]. Intellektual’nye sistemy v proizvodstve = Intelligent Systems in Manufacturing, 2018, vol. 16 (3), pp. 17–21. DOI: 10.22213/2410-9304-2018-3-17-21. 15. Trusov V.N., Zakonov O.I., Shikin V.V. Issledovanie parametrov protsessa frezerovaniya alyuminievogo splava D16T [Research on milling parameters for the D16T aluminium alloy]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki = Vestnik of Samara State Technical University. Technical Sciences Series,2012,no.3(35),pp.155–162.Availableat:https://elibrary.ru/download/elibrary_18955077_35295693. pdf (accessed 09.02.2024). 16. Kushner V.S., Storchak M.G., Burgonova O.Yu., Gubin D.S. Razrabotka matematicheskoi modeli krivoi techeniya splavov pri adiabaticheskikh usloviyakh deformirovaniya [Mathematical modeling of the alloy fl ow curve in adiabatic conditions of deformation]. Zavodskaya laboratoriya. Diagnostika materialov = Industrial

RkJQdWJsaXNoZXIy MTk0ODM1