Study of the effect of hafnium and erbium content on the formation of microstructure in aluminium alloy 1590 cast into a copper chill mold

OBRABOTKAMETALLOV Vol. 26 No. 1 2024 111 MATERIAL SCIENCE 2. Deev V.B., Ri E.H., Prusov E.S., Ermakov M.A., Goncharov A.V. Grain refi nement of casting aluminum alloys of the Al–Mg–Si system by processing the liquid phase using nanosecond electromagnetic pulses. Russian Journal of Non-Ferrous Metals, 2021, vol. 62 (5), pp. 522–530. DOI: 10.3103/S1067821221050023. 3. Shurkin P.K., Belov N.A., Musin A.F., Aksenov A.A. Novel high-strength casting Al−Zn−Mg−Ca−Fe aluminum alloy without heat treatment. Russian Journal of Non-Ferrous Metals, 2020, vol. 61 (2), pp. 179–187. DOI: 10.3103/S1067821220020121. 4. Musfi rah A.H., Jaharah A.G. Magnesium and aluminum alloys in automotive industry. Journal of Applied Sciences Research, 2012, vol. 8 (9), pp. 4865–4875. 5. Benedyk J.C. Aluminum alloys for lightweight automotive structures. Materials, design and manufacturing for lightweight vehicles. Woodhead Publishing, 2010, ch. 3, pp. 79–113. DOI: 10.1533/9781845697822.1.79. 6. Petrov A.P., Golovkin P.A. Rezhimy goryachei deformatsii i tekhnologicheskaya plastichnost’ splavov sistem Al–Mg i Al–Mg–Sc [Modes of hot deformation and technological plasticity of alloys of Al-Mg and Al-Mg-Sc systems]. Perspektivnye tekhnologii legkikh i spetsial’nykh splavov [Promising technologies of light and special alloys]. Moscow, Fizmatlit Publ., 2006, pp. 213–221. ISBN 5-9221-0716-Х. 7. Rana R.S., Purohit R., Das S. Reviews on the infl uences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientifi c and Research Publications, 2012, vol. 2 (6), pp. 1–7. 8. Sanders R.E., Baumann S.F., Stumpf H.C. Wrought non-heat treatable aluminum alloys. Treatise in Materials Science & Technology. Academic Press, 1989, vol. 31, pp. 65–105. DOI: 10.1016/B978-0-12-341831-9.50008-5. 9. NormanA.F., Prangnell P.B., McEwen R.S. The solidifi cation behaviour of dilute aluminium–scandium alloys. Acta Materialia, 1998, vol. 46 (16), pp. 5715–5732. DOI: 10.1016/S1359-6454(98)00257-2. 10. Zakharov V.V. Eff ect of scandium on the structure and properties of aluminum alloys. Metal Science and Heat Treatment, 2003, vol. 45 (7–8), pp. 246–253. DOI: 10.1023/A:1027368032062. 11. Davydov V.G., Elagin V.I., Zakharov V.V., Rostoval D. Alloying aluminum alloys with scandium and zirconium additives. Metal Science and Heat Treatment, 1996, vol. 38 (8), pp. 347–352. DOI: 10.1007/BF01395323. 12. Yin Z., Pan Q., Zhang Y., Jiang F. Eff ect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys. Materials Science and Engineering: A, 2000, vol. 280 (1), pp. 151–155. DOI: 10.1016/ S0921-5093(99)00682-6. 13. Bronz A.V., Еfremov V.I., Plotnikov A.D., Chernyavsky A.G. Splav 1570S – material dlya germetichnykh konstruktsii perspektivnykh mnogorazovykh izdelii RKK «Energiya» [Alloy 1570C – material for pressurized structures of advanced reusable vehicles of RSC Energia]. Kosmicheskaya tekhnika i tekhnologii = Space Engineering and Technology, 2014, no. 4 (7), pp. 62–67. 14. Avtokratova E.V. Perspektivnyi Al-Mg-Sc splav dlya samoletostroeniya [Promising Al-Mg-Sc alloy for aircraft construction]. Vestnik Ufi mskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta. = Vestnik UGATU, 2007, vol. 9 (1), pp. 182–183. 15. Aryshensky E.V., Aryshensky V.Yu., Drits А.М., Grechnikov F.V., Ragazin А.А. Vliyanie rezhimov termicheskoi obrabotki na mekhanicheskie svoistva alyuminievykh splavov 1570, 1580 i 1590 [Thermal treatment eff ect on the mechanical properties of 1570, 1580 and 1590 aluminum alloys]. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie = Vestnik of Samara University. Aerospace and Mechanical Engineering, 2022, vol. 21 (4), pp. 76–87. DOI: 10.18287/2541-7533-2022-21-4-76-87. 16. Ragazin A.A., Aryshenskii E.V., Aryshenskii V.Yu., Drits A.M., Konovalov S.V. Issledovanie raspada peresyshchennogo tverdogo rastvora v novykh vysokomagnievykh splavakh, ekonomnolegirovannykh malymi skandievymi dobavkami [Studies of supersaturated solid solution decomposition in new magnesium rich aluminum alloys with minor scandium additions]. Fundamental’nye problemy sovremennogo materialovedeniya = Basic Problems of Material Science, 2022, vol. 19 (4), pp. 491–500. DOI: 10.25712/ASTU.1811-1416.2022.04.008. 17. Drits A.M., Aryshenskii V.Yu., Aryshenskii E.V., Zaharov V.V. Svarivaemyi termicheski ne uprochnyaemyi splav na osnove sistemy Al-Mg [Welded thermally non-hardened alloy based on Al-Mg system]. Patent RF, no. 2726520 C1, 2020. 18. Teleshov V.V. Fundamental’naya zakonomernost’ izmeneniya struktury pri kristallizatsii alyuminievykh splavov s raznoi skorost’yu okhlazhdeniya [Fundamental relationship of aluminum alloy structure modifi cation during solidifi cation with diff erent cooling rates]. Tekhnologiya legkikh splavov = Technology of Light Alloys, 2015, no. 2, pp. 13–18. 19. HallemH., LefebvreW., Forbord B., Danoix F., MarthinsenK. The formation ofAl3(ScxZryHf1−x−y)-dispersoids in aluminium alloys. Materials Science and Engineering: A, 2006, vol. 421 (1–2), pp. 154–160. DOI: 10.1016/j. msea.2005.11.063.

RkJQdWJsaXNoZXIy MTk0ODM1