Relationship between microstructure and impact toughness of weld metals in pipe high-strength low-alloy steels (research review)

ОБРАБОТКА МЕТАЛЛОВ Том 26 № 1 2024 148 МАТЕРИАЛОВЕДЕНИЕ L.S. Araújo, V.R. dos Santos, J.M.A. Rebello, G.M. Evans // Journal of Materials Research and Technology. – 2021. – Vol. 10. – P. 471–501. – DOI: 10.1016/j.jmrt.2020.12.006. 33. Modifi cation of hydraulic hammers used in repair of metallurgical units / I.A. Zhukov, N.V. Martyushev, D.A. Zyukin,A.M.Azimov,A.I. Karlina // Metallurgist. – 2023. – Vol. 66 (11–12). – P. 1644–1652. – DOI: 10.1007/ s11015-023-01480-w. 34. Formation mechanism and control methods of acicular ferrite in HSLA steels: a review / Y. Shao, C. Liu, Z. Yan, H. Li, Y. Liu // Journal of Materials Science & Technology. – 2018. – Vol. 34 (5). – P. 737– 744. – DOI: 10.1016/j.jmst.2017.11.020. 35. Babu S.S. The mechanism of acicular ferrite in weld deposits // Current opinion in Solid State and Materials Science. – 2004. – Vol. 8 (3–4). – P. 267–278. – DOI: 10.1016/j.cossms.2004.10.001. 36. Beidokhti B., Kokabi A.H., Dolati A. A comprehensive study on the microstructure of high strength low alloy pipeline welds // Journal of Alloys and Compounds. – 2014. – Vol. 597. – P. 142–147. – DOI: 10.1016/j.jallcom.2014.01.212. 37. Dong H., Hao X., Deng D. Eff ect of welding heat input on microstructure and mechanical properties of HSLA steel joint // Metallography Microstructure and Analysis. – 2014. – Vol. 3. – P. 138–146. – DOI: 10.1007/ s13632-014-0130-z. 38. Thewlis G. Classifi cation and quantifi cation of microstructures in steels // Materials Science and Technology. – 2004. – Vol. 20 (2). – P. 143–160. – DOI: 10.1 179/026708304225010325. 39. Dolby R.E. Guidelines for the classifi cation of ferritic steel weld metal microstructural constituents using the light microscope // Welding in the World. – 1986. – Vol. 24 (7). – P. 144–149. 40. Ramirez J.E. Examining the mechanical properties of high-strength steel weld metals // Welding Journal. – 2009. – Vol. 88 (1). – P. 32–38. 41. Infl uence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints / L. Lan, X. Kong, C. Qiu, D. Zhao // Materials and Design. – 2016. – Vol. 90. – P. 488–498. – DOI: 10.1016/j.matdes.2015.10.158. 42. Eff ect of welding heat input on grain boundary evolution and toughness properties in CGHAZ of X90 pipeline steel / P. Zhou, B. Wang, L. Wang, Y. Hu, L. Zhou // Materials Science and Engineering: A. – 2018. – Vol. 722. – P. 112–121. – DOI: 10.1016/j. msea.2018.03.029. 43. Review of mechanical and metallurgical investigations of martensite-austenite constituent in welded joints in Japan / F. Matsuda, Y. Fukada, H. Okada, C. Shiga, K. Ikeuchi, Y. Horii, T. Shiwaku, S. Suzuki // Welding in the World/Le Soudage Dans Le Monde. – 1996. – Vol. 3 (37). – P. 134–154. 44. Eff ect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-aff ected zone of HSLA steel / X. Luo, X. Chen, T. Wang, S. Pan, Z. Wang // Materials Science and Engineering: A. – 2018. – Vol. 710. – P. 192–199. – DOI: 10.1016/j.msea.2017.10.079. 45. Abson D.J. Acicular ferrite and bainite in C–Mn and low-alloy steel arc weld metals // Science and Technology of Welding and Joining. – 2018. – Vol. 23 (8). – P. 635–648. – DOI: 10.1080/13621718.2018.1461992. 46. Evaluation of fracture safety according to plastic deformation with high strength steel weld joints / G. An, J. Park, M. Ohata, F. Minami // Journal of Welding and Joining. – 2019. – Vol. 37 (6). – P. 547–554. – DOI: 10.5781/JWJ.2019.37.6.3. 47. Смирнов М., Пышминцев И., Борякова А. Классификация микроструктур низкоуглеродистых трубных сталей // Металлург. – 2010. – № 7. – С. 45–51. 48. Пышминцев И.Ю., Мальцева А.Н., Смирнов М.А. Роль структурных составляющих в формировании свойств современных высокопрочных сталей для магистральных трубопроводов // Наука и техника в газовой промышленности. – 2011. – № 4. – С. 46–52. 49. Особенности микроструктуры и текстуры труб К65 (Х80), влияющие на способность материала трубы останавливать протяженное вязкое разрушение / И.Ю. Пышминцев, А.М. Гервасьев, А.Н. Мальцева, А.О. Струин // Наука и техника в газовой промышленности. – 2011. – № 4. – С. 73–78. 50. Влияние ферритно-бейнитной структуры на свойства высокопрочной трубной стали / М.А. Смирнов, И.Ю. Пышминцев, А.Н. Мальцева, О.В. Мушина // Металлург. – 2012. – № 1. – P. 55–62. 51. Bhadeshia H.K.D.H. Bainite in steels: theory and practice. – 3rd ed. – London: CRC Press, 2015. – 616 p. – DOI: 10.1201/9781315096674. 52. Zhao H., Wynne B.P., Palmiere E.J. A phase quantifi cation method based on EBSD data for a continuously cooled microalloyed steel // Materials Characterization. – 2017. – Vol. 123. – P. 339–348. – DOI: 10.1016/j.matchar.2016.11.024. 53. Morphological features of polycrystalline CdS1−xSex fi lms obtained by screen-printing method / D.M. Strateichuk, N.V. Martyushev, R.V. Klyuev, V.A. Gladkikh, V.V. Kukartsev, Y.A. Tynchenko, A.I. Karlina // Crystals. – 2023. – Vol. 13 (5). – P. 825. – DOI: 10.3390/cryst13050825. 54. Complex assessment of X-ray diff raction in crystals with face-centered silicon carbide lattice / I.I. Bosikov, N.V. Martyushev, R.V. Klyuev, V.S. Tynchenko, V.A. Kukartsev, S.V. Eremeeva,

RkJQdWJsaXNoZXIy MTk0ODM1