Relationship between microstructure and impact toughness of weld metals in pipe high-strength low-alloy steels (research review)

OBRABOTKAMETALLOV Vol. 26 No. 1 2024 153 MATERIAL SCIENCE 43. Matsuda F., Fukada Y., Okada H., Shiga C., Ikeuchi K., Horii Y., Shiwaku T., Suzuki S. Review of mechanical and metallurgical investigations of martensite-austenite constituent in welded joints in Japan. Welding in the World/ Le Soudage dans le Monde, 1996, vol. 3 (37), pp. 134–154. 44. Luo X., Chen X., Wang T., Pan S., Wang Z. Eff ect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-aff ected zone of HSLA steel. Materials Science and Engineering: A, 2018, vol. 710, pp. 192–199. DOI: 10.1016/j.msea.2017.10.079. 45. Abson D.J. Acicular ferrite and bainite in C–Mn and low-alloy steel arc weld metals. Science and Technology of Welding and Joining, 2018, vol. 23 (8), pp. 635–648. DOI: 10.1080/13621718.2018.1461992. 46. An G., Park J., Ohata M., Minami F. Evaluation of fracture safety according to plastic deformation with high strength steel weld joints. Journal of Welding and Joining, 2019, vol. 37 (6), pp. 547–554. DOI: 10.5781/ JWJ.2019.37.6.3. 47. Smirnov M.A., Pyshmintsev I.Yu. Boryakova A.N. Classifi cation of low-carbon pipe steel microstructures. Metallurgist, 2010, vol. 54 (7–8), pp. 444–454. DOI: 10.1007/s11015-010-9321-2. Translated from Metallurg, 2010, no. 7, pp. 45–51. 48. Pyshmintsev I.Yu., Mal’tseva A.N., Smirnov M.A. Rol’ strukturnykh sostavlyayushchikh v formirovanii svoistv sovremennykh vysokoprochnykh stalei dlya magistral’nykh truboprovodov [The role of structural components in the formation of properties of modern high-strength steels for main pipelines]. Nauka i tekhnika v gazovoi promyshlennosti = Science and Technology in the Gas Industry, 2011, no. 4, pp. 46–52. 49. Pyshmintsev I.Yu., Gervas’ev A.M., Mal’tseva A.N., Struin A.O. Osobennosti mikrostruktury i tekstury trub K65 (Kh80), vliyayushchie na sposobnost’materiala truby ostanavlivat’protyazhennoe vyazkoe razrushenie [Features of microstructure and texture of K65 (X80) pipes infl uencing the ability of the pipe material to stop the extended ductile fracture]. Nauka i tekhnika v gazovoi promyshlennosti = Science and Technology in the Gas Industry, 2011, no. 4, pp. 73–78. 50. Smirnov M.A., Pyshmintsev I.Yu., Mal’tseva A.N., Mushina O.V. Vliyanie ferritno-beinitnoi struktury na svoistva vysokoprochnoi trubnoi stali [Eff ect of ferrite-bainite microstructure on characteristics of high-strength pipe steel]. Metallurg = Metallurgist, 2012, no. 1, pp. 55–62. (In Russian). 51. Bhadeshia H.K.D.H. Bainite in steels: theory and practice. 3rd ed. London, CRC Press, 2015. 616 p. DOI: 10.1201/9781315096674. 52. ZhaoH.,WynneB.P., PalmiereE.J.Aphase quantifi cationmethodbasedonEBSDdata for a continuously cooled microalloyed steel. Materials Characterization, 2017, vol. 123, pp. 339–348. DOI: 10.1016/j.matchar.2016.11.024. 53. Strateichuk D.M., Martyushev N.V., Klyuev R.V., Gladkikh V.A., Kukartsev V.V., Tynchenko Y.A., Karlina A.I. Morphological features of polycrystalline CdS1−xSex fi lms obtained by screen-printing method. Crystals, 2023, vol. 13 (5), p. 825. DOI: 10.3390/cryst13050825. 54. Bosikov I.I., Martyushev N.V., Klyuev R.V., Tynchenko V.S., Kukartsev V.A., Eremeeva S.V., Karlina A.I. Complex assessment of X-ray diff raction in crystals with face-centered silicon carbide lattice. Crystals, 2023, vol. 13 (3), p. 528. DOI: 10.3390/cryst13030528. 55. De-Castro D., Eres-Castellanos A., Vivas J., Caballero F.G., San-Martín D., Capdevila C. Morphological and crystallographic features of granular and lath-like bainite in a low carbon microalloyed steel. Materials Characterization, 2022, vol. 184, p. 111703. DOI: 10.1016/j.matchar.2021.111703. 56. Zhao H., Wynne B.P., Palmiere E.J. Conditions for the occurrence of acicular ferrite transformation in HSLA steels. Journal of Materials Science, 2018, vol. 53, pp. 3785–3804. DOI: 10.1007/s10853-017-1781-3. 57. Ramirez J.E. Characterization of high-strength steel weld metals: chemical composition, microstructure, and nonmetallic inclusions. Welding Journal, 2008, vol. 87 (3), pp. 65s–75s. 58. Lan L., Chang Z., Kong X., Qiu C., Zhao D. Phase transformation, microstructure, and mechanical properties of X100 pipeline steels based on TMCP and HTP concepts. Journal of Materials Science, 2017, vol. 52, pp. 1661– 1678. DOI: 10.1007/s10853-016-0459-6. 59. Lan L., Qiu C., Zhao D., Gao X. Microstructural evolution and mechanical properties of Nb-Ti microalloyed pipeline steel. Journal of Iron and Steel Research International, 2011, vol. 18 (2), pp. 57–63. DOI: 10.1016/S1006706X(11)60024-1. 60. Chu Q., Xu S., Tong X., Li J., Zhang M., Yan F., Zhang W., Bi Z., Yan C. Comparative study of microstructure and mechanical properties of X80 SAW welds prepared using diff erent wires and heat inputs. Journal of Materials Engineering and Performance, 2020, vol. 29, pp. 4322–4338. DOI: 10.1007/s11665-020-04986-5. 61. Beidokhti B., Koukabi A.H., Dolati A. Eff ect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLApipeline steel. Journal of Materials Processing Technology, 2009, vol. 209, pp. 4027–4035. DOI: 10.1016/j.jmatprotec.2008.09.021.

RkJQdWJsaXNoZXIy MTk0ODM1