Relationship between microstructure and impact toughness of weld metals in pipe high-strength low-alloy steels (research review)

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 1 2024 11. Heisterkamp F., Hulka K., Matrosov Yu.I., Morozov Y.D., Efron L.I., Stolyarov V.I., Chevskaya O.N. Niobiisoderzhashchie nizkolegirovannye stali [Niobium containing low alloy steels]. Moscow, Intermet Engineering Publ., 1999. 94 p. 12. Baker T.N. Microalloyed steels. Ironmaking & Steelmaking, 2016, vol. 43 (4), pp. 264–307. DOI: 10.1179/1 743281215Y.0000000063. 13. Baker T.N. Titanium microalloyed steels. Ironmaking & Steelmaking, 2019, vol. 46 (1), pp. 1–55. DOI: 10.1 080/03019233.2018.1446496. 14. Pickering F.B. Overview of titanium microalloyed steels. Titanium technology in microalloyed steels. Ed. by T.N. Baker. London, The Institute of Materials, 1997, p. 10–43. 15. Morrison W.B. Microalloy steels – the beginning. Materials Science and Technology, 2009, vol. 25 (9), pp. 1066–1073. DOI: 10.1179/174328409X453299. 16. Morrison W.B. Infl uence of small niobium additions on properties of carbon-manganese steels. Journal of the Iron and Steel Institute, 1963, vol. 201 (4), pp. 317–325. 17. Midawi A.R.H., Santos E.B.F., Huda N., Sinha A.K., Lazor R., Gerlich A.P. Microstructures and mechanical properties in two X80 weld metals produced using similar heat input. Journal of Materials Processing Technology, 2015, vol. 226, pp. 272–279. DOI: 10.1016/j.jmatprotec.2015.07.019. 18. Sha Q., Li D. Microstructure, mechanical properties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content. Materials Science and Engineering: A, 2013, vol. 585, pp. 214–221. DOI: 10.1016/j.msea.2013.07.055. 19. Zhang H., Zhang H., Lu C.H. Fracture toughness and application of X80 pipeline steel. Materials Science Forum, 2019, vol. 944, pp. 938–943. DOI: 10.4028/www.scientifi c.net/MSF.944.938. 20. Yin T., Wang J., Zhao H., Zhou L., Xue Z., Wang H. Research on fi lling strategy of pipeline multi-layer welding for compound narrow gap groove. Materials, 2022, vol. 15, p. 5967. DOI: 10.3390/ma15175967. 21. Li B., Luo M., Yang Z., Yang F., Liu H., Tang H., Zhang Z., Zhang J. Microstructure evolution of the semimacro segregation induced banded structure in high strength oil tubes during quenching and tempering treatments. Materials, 2019, vol. 12 (20), p. 3310. DOI: 10.3390/ma12203310. 22. Balanovskiy A.E., Astafyeva N.A., Kondratyev V.V., Karlina A.I. Study of mechanical properties of C-MnSi composition metal after wire-arc additive manufacturing (WAAM). CIS Iron and Steel Review, 2021, vol. 22, pp. 66–71. DOI: 10.17580/cisisr.2021.02.12. 23. Shtayger M.G., Balanovskiy A.E., Kargapoltsev S.K., Gozbenko V.E., Karlina A.I., Karlina Yu.I., Govorkov A.S., Kuznetsov B.O. Investigation of macro and micro structures of compounds of high-strength rails implemented by contact butt welding using burning-off . IOP Conference Series: Materials Science and Engineering, 2019, vol. 560 (1), p. 012190. DOI: 10.1088/1757-899X/560/1/012190. 24. Balanovskiy A.E., Astafyeva N.A., Kondratyev V.V., Karlina Yu.I. Study of impact strength of C-Mn-Si composition metal after wire-arc additive manufacturing (WAAM). CIS Iron and Steel Review, 2022, vol. 24, pp. 67– 73. DOI: 10.17580/cisisr.2022.02.10. 25. Balanovsky A.E., Shtayger M.G., Kondrat’ev V.V., Karlina A.I., Govorkov A.S. Comparative analysis of structural state of welded joints rails using method of Barkhausen eff ect and ultrasound. Journal of Physics: Conference Series, 2018, vol. 1118 (1), p. 012006. DOI: 10.1088/1742-6596/1118/1/012006. 26. Zhang Q., Yuan Q., Xiong Z., Liu M., Xu G. Eff ects of Q&T parameters on phase transformation, microstructure, precipitation and mechanical properties in an oil casing steel. Physics of Metals and Metallography, 2021, vol. 122 (14), pp. 1463–1472. DOI: 10.1134/S0031918X21140180. 27. Kim Y.M., Kim S.K., Lim Y.J., Kim N.J. Eff ect of microstructure on the yield ratio and low temperature toughness of linepipe steels. ISIJ International, 2002, vol. 42 (12), pp. 1571–1577. DOI: 10.2355/ isijinternational.42.1571. 28. Kolosov A.D., Gozbenko V.E., Shtayger M.G., Kargapoltsev S.K., Balanovskiy A.E., Karlina A.I., Sivtsov A.V., Nebogin S.A. Comparative evaluation of austenite grain in high-strength rail steel during welding, thermal processing and plasma surface hardening. IOP Conference Series: Materials Science and Engineering, 2019, vol. 560, p. 012185. DOI: 10.1088/1757-899X/560/1/012185. 29. Balanovskii A.E., Vu Van Huy. Estimation of wear resistance of plasma-carburized steel surface in conditions of abrasive wear. Journal of Friction and Wear, 2018, vol. 39 (4), pp. 311–318. DOI: 10.3103/S1068366618040025. 30. Balanovskii A., Vu Van Huy. Plasma surface carburizing with graphite paste. Letters on Materials, 2017, vol. 7 (2), pp. 175–179. DOI: 10.22226/2410-3535-2017-2-175-179. 31. BalanovskiyA.E., Shtaiger M.G., Kondratyev V.V., KarlinaA.I. Determination of rail steel structural elements via the method of atomic force microscopy. CIS Iron and Steel Review, 2022, vol. 23, pp. 86–91. DOI: 10.17580/ cisisr.2022.01.16.

RkJQdWJsaXNoZXIy MTk0ODM1