Relationship between microstructure and impact toughness of weld metals in pipe high-strength low-alloy steels (research review)

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 1 2024 32. Jorge J.C.F., Souza L.F.G. de, Mendes M.C., Bott I.S., Araújo L.S., Santos V.R. dos, Rebello J.M.A., Evans G.M. Microstructure characterization and its relationship with impact toughness of C–Mn and high strength low alloy steel weld metals – a review. Journal of Materials Research and Technology, 2021, vol. 10, pp. 471–501. DOI: 10.1016/j.jmrt.2020.12.006. 33. Zhukov I.A., Martyushev N.V., Zyukin D.A., Azimov A.M., Karlina A.I. Modifi cation of hydraulic hammers used in repair of metallurgical units. Metallurgist, 2022, vol. 65 (11–12), pp. 1644–1652. DOI: 10.1007/s11015-02301480-w. 34. Shao Y., Liu C., Yan Z., Li H., Liu Y. Formation mechanism and control methods of acicular ferrite in HSLA steels: a review. Journal of Materials Science & Technology, 2018, vol. 34 (5), pp. 737–744. 35. Babu S.S. The mechanism of acicular ferrite in weld deposits. Current Opinion in Solid State and Materials Science, 2004, vol. 8 (3–4), pp. 267–278. DOI: 10.1016/j.cossms.2004.10.001. 36. Beidokhti B., Kokabi A.H., Dolati A. A comprehensive study on the microstructure of high strength low alloy pipeline welds. Journal of Alloys and Compounds, 2014, vol. 597, pp. 142–147. DOI: 10.1016/j.jallcom.2014.01.212. 37. Dong H., Hao X., Deng D. Eff ect of welding heat input on microstructure and mechanical properties of HSLA steel joint. Metallography Microstructure and Analysis, 2014, vol. 3, pp. 138–146. DOI: 10.1007/s13632-014-0130-z. 38. Thewlis G. Classifi cation and quantifi cation of microstructures in steels. Materials Science and Technology, 2004, vol. 20 (2), pp. 143–160. DOI: 10.1179/026708304225010325. 39. Dolby R.E. Guidelines for the classifi cation of ferritic steel weld metal microstructural constituents using the light microscope. Welding in the World, 1986, vol. 24 (7), pp. 144–149. 40. Ramirez J.E. Examining the mechanical properties of high-strength steel weld metals. Welding Journal, 2009, vol. 88 (1), pp. 32–38. 41. Lan L., Kong X., Qiu C., Zhao D. Infl uence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints. Materials and Design, 2016, vol. 90, pp. 488–498. DOI: 10.1016/j. matdes.2015.10.158. 42. Zhou P., Wang B., Wang L., Hu Y., Zhou L. Eff ect of welding heat input on grain boundary evolution and toughness properties in CGHAZ of X90 pipeline steel. Materials Science and Engineering: A, 2018, vol. 722, pp. 112–121. DOI: 10.1016/j.msea.2018.03.029. 43. Matsuda F., Fukada Y., Okada H., Shiga C., Ikeuchi K., Horii Y., Shiwaku T., Suzuki S. Review of mechanical and metallurgical investigations of martensite-austenite constituent in welded joints in Japan. Welding in the World/ Le Soudage dans le Monde, 1996, vol. 3 (37), pp. 134–154. 44. Luo X., Chen X., Wang T., Pan S., Wang Z. Eff ect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-aff ected zone of HSLA steel. Materials Science and Engineering: A, 2018, vol. 710, pp. 192–199. DOI: 10.1016/j.msea.2017.10.079. 45. Abson D.J. Acicular ferrite and bainite in C–Mn and low-alloy steel arc weld metals. Science and Technology of Welding and Joining, 2018, vol. 23 (8), pp. 635–648. DOI: 10.1080/13621718.2018.1461992. 46. An G., Park J., Ohata M., Minami F. Evaluation of fracture safety according to plastic deformation with high strength steel weld joints. Journal of Welding and Joining, 2019, vol. 37 (6), pp. 547–554. DOI: 10.5781/ JWJ.2019.37.6.3. 47. Smirnov M.A., Pyshmintsev I.Yu. Boryakova A.N. Classifi cation of low-carbon pipe steel microstructures. Metallurgist, 2010, vol. 54 (7–8), pp. 444–454. DOI: 10.1007/s11015-010-9321-2. Translated from Metallurg, 2010, no. 7, pp. 45–51. 48. Pyshmintsev I.Yu., Mal’tseva A.N., Smirnov M.A. Rol’ strukturnykh sostavlyayushchikh v formirovanii svoistv sovremennykh vysokoprochnykh stalei dlya magistral’nykh truboprovodov [The role of structural components in the formation of properties of modern high-strength steels for main pipelines]. Nauka i tekhnika v gazovoi promyshlennosti = Science and Technology in the Gas Industry, 2011, no. 4, pp. 46–52. 49. Pyshmintsev I.Yu., Gervas’ev A.M., Mal’tseva A.N., Struin A.O. Osobennosti mikrostruktury i tekstury trub K65 (Kh80), vliyayushchie na sposobnost’materiala truby ostanavlivat’protyazhennoe vyazkoe razrushenie [Features of microstructure and texture of K65 (X80) pipes infl uencing the ability of the pipe material to stop the extended ductile fracture]. Nauka i tekhnika v gazovoi promyshlennosti = Science and Technology in the Gas Industry, 2011, no. 4, pp. 73–78. 50. Smirnov M.A., Pyshmintsev I.Yu., Mal’tseva A.N., Mushina O.V. Vliyanie ferritno-beinitnoi struktury na svoistva vysokoprochnoi trubnoi stali [Eff ect of ferrite-bainite microstructure on characteristics of high-strength pipe steel]. Metallurg = Metallurgist, 2012, no. 1, pp. 55–62. (In Russian). 51. Bhadeshia H.K.D.H. Bainite in steels: theory and practice. 3rd ed. London, CRC Press, 2015. 616 p. DOI: 10.1201/9781315096674.

RkJQdWJsaXNoZXIy MTk0ODM1