OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 1 2024 References 1. Ghosh P.S., Chakraborty S., Biswas A.R., Mandal N.K. Empirical modelling and optimization of temperature and machine vibration in CNC hard turning. Materials Today: Proceedings, 2018, vol. 5 (5), pp. 2394–12402. DOI: 10.1016/j.matpr.2018.02.218. 2. Groover M.P. Fundamentals of modern manufacturing: materials, processes, and systems. 4th ed. Hoboken, NJ, Wiley, 2010. 1012 p. ISBN 978-0470-467002. 3. Zhao J., Liu Z., Wang B., Hua Y., Wang Q. Cutting temperature measurement using an improved two-color infrared thermometer in turning Inconel 718 with whisker-reinforced ceramic tools. Ceramics International, 2018, vol. 44 (15), pp. 19002–19007. DOI: 10.1016/j.ceramint.2018.07.142. 4. Kakade H.B., Patil N.G. Comparative investigations into high speed machining of AB titanium alloy (Ti– 6al–4v) under dry and compressed Co2 gas cooling environment. AIP Conference Proceedings, 2018, vol. 2018 (1), pp. 20009-1–20009-9. DOI: 10.1063/1.5058246. 5. Gunjal S.U., Sanap S.B., Patil N.G. Role of cutting fl uids under minimum quantity lubrication: an experimental investigation of chip thickness. Materials Today: Proceedings, 2020, vol. 28 (2), pp. 1101–1105. DOI: 10.1016/j. matpr.2020.01.090. 6. Kulkarni A.P., Chinchanikar S., Sargade V.G. Dimensional analysis and ANN simulation of chip-tool interface temperature during turning SS304. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 4, pp. 47–64. DOI: 10.17212/1994-6309-2021-23.4-47-64. (In Russian). 7. Kumar R., Sahoo A.K., Das R.K., Panda A., Mishra P.C. Modelling of fl ank wear, surface roughness and cutting temperature in sustainable hard turning of AISI D2 steel. Procedia Manufacturing, 2018, vol. 20, pp. 406– 413. DOI: 10.1016/j.promfg.2018.02.059. 8. Gosai M., Bhavsar S.N. Experimental study on temperature measurement in turning operation of hardened steel (EN36). Procedia Technology, 2016, vol. 23, pp. 311–318. DOI: 10.1016/j.protcy.2016.03.032. 9. Abhang L.B., Hameedullah M. Chip-tool interface temperature prediction model for turning process. International Journal of Engineering Science and Technology, 2010, vol. 2 (4), pp. 382–393. 10. Doniavi A., Eskanderzade M., Tahmsebian M. Empirical modeling of surface roughness in turning process of 1060 steel using factorial design methodology. Journal of Applied Sciences, 2007, vol. 7 (17), pp. 2509–2513. DOI: 10.3923/jas.2007.2509.2513. 11. Verma V., Kumar J., Singh A. Optimization of material removal rate and surface roughness in turning of 316 steel by using full factorial method. Materials Today: Proceedings, 2020, vol. 25, pp. 793–798. DOI: 10.1016/j. matpr.2019.09.029. 12. Das D., Ali R.F., Nayak B.B., Routara B.C. Investigation on surface roughness and chip reduction coeffi cient during turning aluminium matrix composite. Materials Today: Proceedings, 2019, vol. 5 (11), pp. 23541–23548. DOI: 10.1016/j.matpr.2018.10.142. 13. Bhople N., Patil N., Mastud S. The experimental investigations into dry turning of austempered ductile iron. Procedia Manufacturing, 2018, vol. 20, pp. 227–232. DOI: 10.1016/j.promfg.2018.02.033. 14. Aouici H., Yallese M.A., Chaoui K., Mabrouki T., Rigal J.F. Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization. Measurement, 2012, vol. 45 (3), pp. 344–353. DOI: 10.1016/j.measurement.2011.11.011. 15. Longbottom J.M., Lanham J.D. Cutting temperature measurement while machining – a review. Aircraft Engineering and Aerospace Technology, 2005, vol. 77 (2), pp. 122–130. DOI: 10.1108/00022660510585956. 16. Korkut I., Acır A., Boy M. Application of regression and artifi cial neural network analysis in modelling of tool–chip interface temperature in machining. Expert Systems with Applications, 2011, vol. 38 (9), pp. 11651–11656. DOI: 10.1016/j.eswa.2011.03.044. 17. Dhar N.R., Kamruzzaman M. Cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI-4037 steel under cryogenic condition. International Journal of Machine Tools and Manufacture, 2007, vol. 47 (5), pp. 754–759. DOI: 10.1016/j.ijmachtools.2006.09.018. 18. Patil N.G., Brahmankar P.K. Semi-empirical modeling of surface roughness in wire electro-discharge machining of ceramic particulate reinforced Al matrix composites. Procedia CIRP, 2016, vol. 42, pp. 280–285. DOI: 10.1016/j.procir.2016.02.286. 19. Patel D.R., Kiran M.B. Anon-contact approach for surface roughness prediction in CNC turning using a linear regression model. Materials Today: Proceedings, 2020, vol. 26, pp. 350–355. DOI: 10.1016/j.matpr.2019.12.029.
RkJQdWJsaXNoZXIy MTk0ODM1