Investigation on the electrical discharge machining of cryogenic treated beryllium copper (BeCu) alloys

OBRABOTKAMETALLOV Vol. 26 No. 1 2024 191 MATERIAL SCIENCE References 1. Vora J., Khanna S., Chaudhari R., Patel V.K., Paneliya S., Pimenov D.Y., Giasin K., Prakash C. Machining parameter optimization and experimental investigations of nano-graphene mixed electrical discharge machining of nitinol shape memory alloy. Journal of Materials Research and Technology, 2022, vol. 19, pp. 653–668. DOI: 10.1016/j.jmrt.2022.05.076. 2. Akıncıoğlu S. Taguchi optimization of multiple performance characteristics in the electrical discharge machining of the TiGr2. Facta Universitatis. Series: Mechanical Engineering, 2022, vol. 20 (2), pp. 237–253. DOI: 10.22190/FUME201230028A. 3. Danish M., Al-Amin M., Abdul-Rani A.M., Rubaiee S., Ahmed A., Zohura F.T., Ahmed R., Yildirim M.B. Optimization of hydroxyapatite powder mixed electric discharge machining process to improve modifi ed surface features of 316L stainless steel. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, vol. 237 (3), pp. 881–895. DOI: 10.1177/09544089221111584. 4. Kam M., İpekçi A., Argun K. Experimental investigation and optimization of machining parameters of deep cryogenically treated and tempered steels in electrical discharge machining process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, vol. 236 (5), pp. 1927–1935. DOI: 10.1177/09544089221078133. 5. Gautam N., Goyal A., Sharma S.S., Oza A.D., Kumar R. Study of various optimization techniques for electric discharge machining and electrochemical machining processes. Materials Today: Proceedings, 2022, vol. 57, pp. 615–621. DOI: 10.1016/j.matpr.2022.02.005. 6. Shukla S.K., Priyadarshini A. Application of machine learning techniques for multi objective optimization of response variables in wire cut electro discharge machining operation. Materials Science Forum, 2019, vol. 969, pp. 800–806. DOI: 10.4028/www.scientifi c.net/MSF.969.800. 7. Kumar Vin., Kumar Vik., Jangra K.K. An experimental analysis and optimization of machining rate and surface characteristics in WEDM of Monel-400 using RSM and desirability approach. Journal of Industrial Engineering International, 2015, vol. 11 (3), pp. 297–307. DOI: 10.1007/s40092-015-0103-0. 8. Kumar S.V., Kumar M.P. Optimization of cryogenic cooled EDM process parameters using grey relational analysis. Journal of Mechanical Science and Technology, 2014, vol. 28, pp. 3777–3784. DOI: 10.1007/s12206014-0840-9. 9. Gangele A., Mishra A. Surface roughness optimization during machining of niti shape memory alloy by EDM through Taguchi’s technique. Materials Today: Proceedings, 2020, vol. 29, pp. 343–347. DOI: 10.1016/j. matpr.2020.07.287. 10. Ghosh I., SanyalM., JanaR., Dan P.K.Machine learning for predictivemodeling inmanagement of operations of EDM equipment product. 2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). IEEE, 2016, pp. 169–174. DOI: 10.1109/ICRCICN.2016.7813651. 11. Ulas M., Aydur O., Gurgenc T., Ozel C. Surface roughness prediction of machined aluminum alloy with wire electrical discharge machining by diff erent machine learning algorithms. Journal of Materials Research and Technology, 2020, vol. 9 (6), pp. 12512–12524. DOI: 10.1016/j.jmrt.2020.08.098. 12. Kumar N.A., Babu A.S. Infl uence of input parameters on the near-dry WEDM of Monel alloy. Materials and Manufacturing Processes, 2018, vol. 33 (1), pp. 85–92. DOI: 10.1080/10426914.2017.1279297. 13. PogrebnjakA., Bratushka S., Beresnev V.M., Levintant-Zayonts N. Shape memory eff ect and superelasticity of titanium nickelide alloys implanted with high ion doses. Russian Chemical Reviews, 2013, vol. 82 (12), p. 1135. DOI: 10.1070/RC2013v082n12ABEH004344. 14. Ming W., Zhang S., Zhang G., Du J., Ma J., He W., Cao C., Liu K. Progress in modeling of electrical discharge machining process. International Journal of Heat and Mass Transfer, 2022, vol. 187, p. 122563. DOI: 10.1016/j.ijheatmasstransfer.2022.122563. 15. Shastri R.K., Mohanty C.P., Dash S., Gopal K.M.P., Annamalai A.R., Jen C.P. Reviewing performance measures of the die-sinking electrical discharge machining process: challenges and future scopes. Nanomaterials, 2022, vol. 12 (3), p. 384. DOI: 10.3390/nano12030384. 16. Boopathi S. An extensive review on sustainable developments of dry and near-dry electrical discharge machining processes. Journal of Manufacturing Science and Engineering, 2022, vol. 144 (5), p. 050801. DOI: 10.1115/1.4052527.

RkJQdWJsaXNoZXIy MTk0ODM1