OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 1 2024 9. Gangele A., Mishra A. Surface roughness optimization during machining of niti shape memory alloy by EDM through Taguchi’s technique. Materials Today: Proceedings, 2020, vol. 29, pp. 343–347. DOI: 10.1016/j. matpr.2020.07.287. 10. Ghosh I., SanyalM., JanaR., Dan P.K.Machine learning for predictivemodeling inmanagement of operations of EDM equipment product. 2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). IEEE, 2016, pp. 169–174. DOI: 10.1109/ICRCICN.2016.7813651. 11. Ulas M., Aydur O., Gurgenc T., Ozel C. Surface roughness prediction of machined aluminum alloy with wire electrical discharge machining by diff erent machine learning algorithms. Journal of Materials Research and Technology, 2020, vol. 9 (6), pp. 12512–12524. DOI: 10.1016/j.jmrt.2020.08.098. 12. Kumar N.A., Babu A.S. Infl uence of input parameters on the near-dry WEDM of Monel alloy. Materials and Manufacturing Processes, 2018, vol. 33 (1), pp. 85–92. DOI: 10.1080/10426914.2017.1279297. 13. PogrebnjakA., Bratushka S., Beresnev V.M., Levintant-Zayonts N. Shape memory eff ect and superelasticity of titanium nickelide alloys implanted with high ion doses. Russian Chemical Reviews, 2013, vol. 82 (12), p. 1135. DOI: 10.1070/RC2013v082n12ABEH004344. 14. Ming W., Zhang S., Zhang G., Du J., Ma J., He W., Cao C., Liu K. Progress in modeling of electrical discharge machining process. International Journal of Heat and Mass Transfer, 2022, vol. 187, p. 122563. DOI: 10.1016/j.ijheatmasstransfer.2022.122563. 15. Shastri R.K., Mohanty C.P., Dash S., Gopal K.M.P., Annamalai A.R., Jen C.P. Reviewing performance measures of the die-sinking electrical discharge machining process: challenges and future scopes. Nanomaterials, 2022, vol. 12 (3), p. 384. DOI: 10.3390/nano12030384. 16. Boopathi S. An extensive review on sustainable developments of dry and near-dry electrical discharge machining processes. Journal of Manufacturing Science and Engineering, 2022, vol. 144 (5), p. 050801. DOI: 10.1115/1.4052527. 17. Ali M.A., Samsul M., Hussein N.I., Rizal M., Izamshah R., Hadzley M., Kasim M.S., Sulaiman M.A., Sivarao S. The eff ect of EDM die-sinking parameters on material removal rate of beryllium copper using full factorial method. Middle-East Journal of Scientifi c Research, 2013, vol. 16 (1), pp. 44–50. DOI: 10.5829/idosi. mejsr.2013.16.01.2249. 18. Daneshmand S., Kahrizi E.F., Abedi E., Abdolhosseini M.M. Infl uence of machining parameters on electro discharge machining of NiTi shape memory alloys. International Journal of Electrochemical Science, 2013, vol. 8 (3), pp. 3095–3104. DOI: 10.1016/S1452-3981(23)14376-8. 19. Daneshmand S., Monfared V., Lotfi Neyestanak A.A. Eff ect of tool rotational and Al2O3 powder in electro discharge machining characteristics of NiTi-60 shape memory alloy. Silicon, 2017, vol. 9 (2), pp. 273–283. DOI: 10.1007/s12633-016-9412-1. 20. Baroi B.K., Jagadish, Patowari P.K. A review on sustainability, health, and safety issues of electrical discharge machining. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, vol. 44 (2), p. 59. DOI: 10.1007/s40430-021-03351-4. 21. Kannan E., Trabelsi Y., Boopathi S., Alagesan S. Infl uences of cryogenically treated work material on near-dry wire-cut electrical discharge machining process. Surface Topography: Metrology and Properties, 2022, vol. 10 (1), p. 015027. DOI: 10.1088/2051-672X/ac53e1. 22. Abdulkareem S., Khan A.A., Konneh M. Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining. The International Journal of Advanced Manufacturing Technology, 2009, vol. 45, pp. 1146–1151. DOI: 10.1007/s00170-009-2060-5. 23. Gill S.S., Singh J. Eff ect of deep cryogenic treatment on machinability of titanium alloy (Ti-6246) in electric discharge drilling. Materials and Manufacturing Processes, 2010, vol. 25 (6), pp. 378–385. DOI: 10.1080/10426910903179914. 24. Srivastava V., Pandey P.M. Performance evaluation of electrical discharge machining (EDM) process using cryogenically cooled electrode. Materials and Manufacturing Processes, 2012, vol. 27 (6), pp. 683–688. DOI: 10 .1080/10426914.2011.602790. 25. Yildiz Y., Sundaram M., Rajurkar K., Nalbant M. The eff ects of cold and cryogenic treatments on the machinability of beryllium-copper alloy in electro discharge machining. 44th CIRP Conference on Manufacturing Systems, Madison, Wisconsin, 2011, pp. 1–6. 26. Singh R., Singh B. Comparison of cryo-treatment eff ect on machining characteristics of titanium in electric discharge machining. International Journal of Automotive and Mechanical Engineering, 2011, vol. 3, pp. 239– 248. DOI: 10.15282/ijame.3.2011.1.0020.
RkJQdWJsaXNoZXIy MTk0ODM1