Study of the effect of a combined modifier from silicon production waste on the properties of gray cast iron

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 1 2024 composition of nanoinoculated cast iron for anodes stubs of aluminium pots]. Metallurg = Metallurgist, 2012, no. 1, pp. 69–71. (In Russian). 3. KondratyevV.V., Nemchinova N.V., Ivanov N.A., ErshovV.A., Sysoev I.A. Novye tekhnologicheskie resheniya po pererabotke otkhodov kremnievogo i alyuminievogo proizvodstv [New production solutions for processing silicon and aluminum production waste]. Metallurg = Metallurgist, 2013, no. 5, pp. 92–95. (In Russian). 4. Evseev N.V., Tyutrin A.A., Pastukhov M.P. Granulirovanie pylevykh otkhodov kremnievogo proizvodstva dlya vozvrata v tekhnologicheskii protsess [Granulation of silicone production dust waste for recycling]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Proceedings of Irkutsk State Technical University, 2019, vol. 23 (4), pp. 805–815. DOI: 10.21285/1814-3520-2019-4-805-815. 5. Babkov V.V., GabitovA.I., Sakhibgareev P.P. Amorfnyi mikrokremnezem v protsessakh strukturoobrazovaniya i uprochneniya tsementnogo kamnya [Amorphous microsilica in structurization and hardening of a cement stone processes]. Bashkirskii khimicheskii zhurnal = Bashkir Chemical Journal, 2007, vol. 17 (3), pp. 206–210. 6. AlTawaiha H., Alhomaidat F., Eljufout T. A review of the eff ect of nano-silica on the mechanical and durability properties of cementitious composites. Infrastructures, 2023, vol. 8 (9), p. 132. DOI: 10.3390/infrastructures8090132. 7. Karlina A.I. Tekhnologiya pererabotki pyli gazoochistki prizvodstva kremniya v modifi tsiruyushchie nanodobavki dlya chugunov. Avtoref. diss. kand. tekhn. nauk [Technology of processing gas purifi cation dust from silicon production into modifying nanoadditives for cast iron. Author’s abstract of PhD eng. sci. diss.]. Ekaterinburg, 2019. 24 p. 8. Stefanescu D.M., Alonso G., Larrañaga P., De la Fuente E., Suarez R. Reexamination of crystal growth theory of graphite in iron-carbon alloys. Acta Materialia, 2017, vol. 139, pp. 109–121. DOI: 10.1016/j.actamat.2017.08.004. 9. Riposan I., Chisamera M., Stan S., Hartung C., White D. Three-stage model for nucleation of graphite in grey cast iron. Materials Science and Technology, 2010, vol. 26 (12), pp. 1439–1447. DOI: 10.1179/026708309X12495 548508626. 10. Stefan E., Riposan I., Chisamera M. Application of thermal analysis in solidifi cation pattern control of La-inoculated grey cast irons. Journal of Thermal Analysis and Calorimetry, 2019, vol. 138, pp. 2491–2503. DOI: 10.1007/s10973-019-08714-7. 11. Riposan I., Stefan E., Stan S., Pana N.R., Chisamera M. Eff ects of inoculation on structure characteristics of high silicon ductile cast irons in thin wall castings. Metals, 2020, vol. 10 (8), p. 1091. DOI: 10.3390/met10081091. 12. Riposan I., Skaland T. Modifi cation and inoculation of cast iron. Cast Iron Science and Technology Handbook. ASM International, 2017, pp. 160–176. DOI: 10.31399/asm.hb.v01a.a0006315. 13. Anca D.-E., Stan I., Riposan I., Stan S. Graphite compactness degree and nodularity of high-Si ductile iron produced via permanent mold versus sand mold casting. Materials, 2022, vol. 15, p. 2712. DOI: 10.3390/ma15082712. 14. Sommerfeld A., Tonn B. Theory of graphite nucleation in lamellar graphite cast iron. International Journal of Metalcasting, 2009, vol. 3, pp. 39–47. DOI: 10.1007/BF03355457. 15. Double D.D., Hellawell A. The nucleation and growth of graphite–the modifi cation of cast iron. Acta Metallurgica et Materialia, 1995, vol. 43 (6), pp. 2435–2442. DOI: 10.1007/BF03355457. 16. Amini S., Garay J., Liu G., Balandin A.A., Abbaschian R. Growth of large-area graphene fi lms from metal– carbon melts. Journal of Applied Physics, 2010, vol. 108 (9), pp. 094321–94327. DOI: 10.1063/1.3498815. 17. Amini S., Kalaantari H., Garay J., BalandinA.A.,Abbaschian R. Growth of graphene and graphite nanocrystals from a molten phase. Journal of Materials Science, 2011, vol. 46 (19), pp. 6255–6263. DOI: 10.1007/s10853-0115432-9. 18. Stefanescu D.M., Alonso G., Larrañaga P., De la Fuente E., Suárez R. On the crystallization of graphite from liquid iron-carbon-silicon melts. Acta Materialia, 2016, vol. 107, pp. 102–126. DOI: 10.1016/j.actamat.2016.01.047. 19. Qing J., Lekakh S., Xu M., Field D. Formation of complex nuclei in graphite nodules of cast iron. Carbon, 2021, vol. 171, pp. 276–288. DOI: 10.1016/j.carbon.2020.08.022. 20. Theuwissen K., Lacaze J., Laff ont L. Structure of graphite precipitates in cast iron. Carbon, 2016, vol. 96, pp. 1120–1128. DOI: 10.1016/j.carbon.2015.10.066. 21. Amini S., Abbaschian R. Nucleation and growth kinetics of graphene layers from a molten phase. Carbon, 2013, vol. 51, pp. 110–123. DOI: 10.1016/j.carbon.2012.08.019. 22. ASTMA247-67(1998)e1. Standard test method for evaluating the microstructure of graphite in iron castings. West Conshohocken, PA, ASTM International, 1967. 23. DIN EN ISO 945-1–2019. Microstructure of cast irons – Part 1: Graphite classifi cation by visual analysis (ISO 945-1:2019). German version EN ISO 945-1:2019. 40 p.

RkJQdWJsaXNoZXIy MTk0ODM1