OBRABOTKAMETALLOV Vol. 26 No. 2 2024 technology technical characteristics of baking ovens produced by Shebekinsky machine-building plant, the estimated average power is 1 kW per square meter of a coating. Thus, the obtained specimens with coatings Fe2O3; Al2O3 + 10 % Fe2O3; Ti + 10 % Fe2O3 give the supplied energy at 450 °C more than 3 times more efficient than the specimens of steel St3, from which the ovens are made. Theoretically, even at 200 ° C, more than 1 kW/m2 can be removed from the coating. References 1. Tan W., Petorak C.A., Trice R.W. Rare-earth modified zirconium diboride high emissivity coatings for hypersonic applications. Journal of the European Ceramic Society, 2014, vol. 34 (1), pp. 1–11. DOI: 10.1016/j. jeurceramsoc.2013.07.016. 2. Tang H., Xin T., Sun Q., Yi C., Jiang Z., Wang F. Influence of FeSO4 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. Applied Surface Science, 2011, vol. 257 (24), pp. 10839– 10844. DOI: 10.1016/j.apsusc.2011.07.118. 3. Li X., Peoples J., Yao P., Ruan X. Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Applied Materials & Interfaces, 2021, vol. 13 (18), pp. 21733–21739. DOI: 10.1021/ acsami.1c02368. 4. Liu J., Chen Z., Yang L., Chai P., Wan Q. The effect of SiC coatings microstructure on their infrared emissivity. Journal of Asian Ceramic Societies, 2023, vol. 11 (1), pp. 98–104. DOI: 10.1080/21870764.2022.2159952. 5. Shao G., Wu X., Cui S., Shen X., Kong Y., Lu Y., Jiao C., Jiao J. High emissivity MoSi2–ZrO2–borosilicate glass multiphase coating with SiB6 addition for fibrous ZrO2 ceramic. Ceramics International, 2016, vol. 42 (7), pp. 8140–8150. DOI: 10.1016/j.ceramint.2016.02.020. 6. Huang X., Li N., Wang J., Liu D., Xu J., Zhang Z., Zhong M. Single nanoporous MgHPO4·1.2H2O for daytime radiative cooling. ACS Applied Materials & Interfaces, 2019, vol. 12 (2), pp. 2252–2258. DOI: 10.1021/ acsami.9b14615. 7. Švantner M., Honnerová P., Veselý Z. The influence of furnace wall emissivity on steel charge heating. Infrared Physics & Technology, 2016, vol. 74, pp. 63–71. DOI: 10.1016/j.infrared.2015.12.001. 8. Zhao J., Ma L., Zayed M.E., Elsheikh A.H., Li W., Yan Q., Wang J. Industrial reheating furnaces: A review of energy efficiency assessments, waste heat recovery potentials, heating process characteristics and perspectives for steel industry. Process Safety and Environmental Protection, 2021, vol. 147, pp. 1209–1228. DOI: 10.1016/j. psep.2021.01.045. 9. Sako E.Y., Orsolini H.D., Moreira M., De Sousa Meneses D., Pandolfelli V.C. Emissivity of spinel and titanate structures aiming at the development of industrial high-temperature ceramic coatings. Journal of the European Ceramic Society, 2021, vol. 41 (4), pp. 2958–2967. DOI: 10.1016/j.jeurceramsoc.2020.11.010. 10. Mahadik D.B., Gujjar S., Gouda G.M., Barshilia H.C. Double layer SiO2/Al2O3 high emissivity coatings on stainless steel substrates using simple spray deposition system. Applied Surface Science, 2014, vol. 299, pp. 6–11. DOI: 10.1016/j.apsusc.2014.01.159. 11. Gahmousse A., Ferria K., Rubio J., Cornejo N., Tamayo A. Influence of Fe2O3 on the structure and nearinfrared emissivity of aluminosilicate glass coatings. Applied Physics A, 2020, vol. 126 (9), p. 732. DOI: 10.1007/ s00339-020-03921-8. 12. Heynderickx G.J., Nozawa M. High-emissivity coatings on reactor tubes and furnace walls in steam cracking furnaces. Chemical Engineering Science, 2004, vol. 59 (22–23), pp. 5657–5662. DOI: 10.1016/j.ces.2004.07.075. 13. Mauer M., Kalenda P., Honner M., Vacikova P. Composite fillers and their influence on emissivity. Journal of Physics and Chemistry of Solids, 2012, vol. 73 (12), pp. 1550–1555. DOI: 10.1016/j.jpcs.2011.11.015. 14. He B., Li F., Zhou H., Dai Y., Sun B. Study of failure of EB-PVD thermal barrier coating upon near-α titanium alloy. Journal of Materials Science, 2008, vol. 43, pp. 839–846. DOI: 10.1007/s10853-007-2204-7. 15. Zukerman I., Zhitomirsky V.N., Beit-Ya’akov G., Boxman R.L., Raveh A., Kim S.K. Vacuum arc deposition of Al2O3–ZrO2 coatings: arc behavior and coating characteristics. Journal of Materials Science, 2010, vol. 45, pp. 6379–6388. DOI: 10.1007/s10853-010-4734-7. 16. Shin D.-I., Gitzhofer F., Moreau C. Thermal property evolution of metal based thermal barrier coatings with heat treatments. Journal of Materials Science, 2007, vol. 42, pp. 5915–5923. DOI: 10.1007/s10853-007-1772-x. 17. Tang H., Sun Q., Yi C.G., Jiang Z.H., Wang F.P. High emissivity coatings on titanium alloy prepared by micro-arc oxidation for high temperature application. Journal of Materials Science, 2012, vol. 47, pp. 2162–2168. DOI: 10.1007/s10853-011-6017-3.
RkJQdWJsaXNoZXIy MTk0ODM1