Investigation of cutting forces and machinability during milling of corrosion-resistant powder steel produced by laser metal deposition

OBRABOTKAMETALLOV technology Vol. 26 No. 2 2024 20. Greco S., Schmidt M., Klauer K., Kirsch B., Aurich J.C. Hybrid manufacturing: influence of material properties during micro milling of different additively manufactured AISI 316L. Production Engineering Research and Development, 2022, vol. 16, pp. 797–809. DOI: 10.1007/s11740-022-01139-6. 21. Maiss O., Grove T., Denkena B. Influence of asymmetric cutting edge roundings on surface topography. Production Engineering Research and Development, 2017, vol. 11, pp. 383–388. DOI: 10.1007/s11740-017-0742-7. 22. Yang N., Yee J., Zheng B., Gaiser K., Reynolds T., Clemon L., LuW.Y., Schoenung J.M., Lavernia E.J. Processstructure-property relationships for 316L stainless steel fabricated by additive manufacturing and its implication for component engineering. Journal of Thermal Spray Technology, 2017, vol. 26, pp. 610–626. DOI: 10.1007/s11666016-0480-y. 23. Yang Y., Gong Y., Qu S., Xin B., Xu Y., Qi Y. Additive/subtractive hybrid manufacturing of 316L stainless steel powder: Densification, microhardness and residual stress. Journal of Mechanical Science and Technology, 2019, vol. 33, pp. 5797–5807. DOI: 10.1007/s12206-019-1126-z. 24. Aqilah D.N., Sayuti A.K.M., Farazila Y., Suleiman D.Y., Amirah M.A.N., Izzati W.B.W.N. Effects of process parameters on the surface roughness of stainless steel 316L parts produced by selective laser melting. ASTM International Journal of Testing and Evaluation, 2018, vol. 46 (4), pp. 1673–1683. DOI: 10.1520/JTE20170140. 25. Liao Z., MonacaA., Murray J., Speidel A., Ushmaev D., ClareA., Axinte D., M’Saoubi R. Surface integrity in metal machining – Part I: Fundamentals of surface characteristics and formation mechanisms. International Journal of Machine Tools and Manufacture, 2021, vol. 162. DOI: 10.1016/j.ijmachtools.2020.103687. 26. Mohd Yusuf S., Cutler S., Gao N. Review: the impact of metal additive manufacturing on the aerospace industry. Metals, 2019, vol. 9 (12), p. 1286. DOI: 10.3390/met9121286. 27. Luecke W.E., Slotwinski J.A. Mechanical properties of austenitic stainless steel made by additive manufacturing. Journal of Research of the National Institute of Standards and Technology, 2014, vol. 119, pp. 398– 418. DOI: 10.6028/jres.119.015. 28. Shrestha R., Simsiriwong J., Shamsaei N. Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness. Additive Manufacturing, 2019, vol. 28, pp. 23–38. DOI: 10.1016/j. addma.2019.04.011. 29. Kok Y., Tan X.P., Wang P., Nai M.L.S., Loh N.H., Liu E., Tor S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials & Design, 2018, vol. 139, pp. 565–586. DOI: 10.1016/j.matdes.2017.11.021. 30. Kozlov V., Babaev A., Schulz N., Semenov A., Shevchuk A. Study of a methodology for calculating contact stresses during blade processing of structural steel. Metals, 2023, vol. 13, p. 2009. DOI: 10.3390/met13122009. 31. Kluczyński J., Śnieżek L., Grzelak K., Janiszewski J., Płatek P., Torzewski J., Szachogłuchowicz I., Gocman K. Influence of selective laser melting technological parameters on the mechanical properties of additively manufactured elements using 316L austenitic steel. Materials, 2020, vol. 13, p. 1449. DOI: 10.3390/ma13061449. Conflicts of Interest The authors declare no conflict of interest.  2024 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1