OBRABOTKAMETALLOV technology Vol. 26 No. 2 2024 Ta b l e 2 Geometric dimensions of single tracks Power, W Speed, mm/s Consumption, % Beam diameter, mm Height, µm Width, µm Penetration depth, µm Contact angle, ° 1.000 15 8 2.9 825 1,177 579 38 1.000 25 8 2.9 540 1,285 552 132 1.000 35 8 2.9 402 1,100 431 117 1.250 15 8 2.9 935 1,305 738 43 1.250 25 8 2.9 620 1,213 571 47 1.250 35 8 2.9 445 1,202 534 143 1.500 15 8 2.9 790 1,485 1,286 33 1.500 25 8 2.9 540 1,527 1,089 117 1.500 35 8 2.9 397 1,312 969 77 1.250 25 4 2.9 245 1,642 872 155 1.250 25 12 2.9 765 1,197 485 67 1.250 25 4 4.1 305 1,567 655 130 1.250 25 4 5.6 345 1,775 552 134 a b c Fig. 2. Cross sections of tracks obtained at a power of 1,000 W, powder consumption 24 g/min, laser spot size 2.9 mm, speed 15 mm/s (a), 25 mm/s (b), 35 mm/s (c) a b c Fig. 3. Cross sections of tracks obtained at a power of 1.250 W, powder flow rate 24 g/min, laser spot size 2.9 mm, speed 15 mm/s (a), 25 mm/s (b), 35 mm/s (c) surfaced layer (Fig. 2–4). This can be explained by a decrease in linear energy consumption (formation of a smaller melt bath), and a decrease in powder mass flow rate per unit length at constant feed rate. Increasing the power similarly changed the geometrical dimensions of the track (Fig. 2–4).
RkJQdWJsaXNoZXIy MTk0ODM1