The effect of laser surfacing modes on the geometrical characteristics of the single laser tracks

OBRABOTKAMETALLOV Vol. 26 No. 2 2024 technology 2. Svetlizky D., Das M., Zheng B., Vyatskikh A.L., Bose S., Bandyopadhyay A., Schoenung J.M., Lavernia E.J., Eliaz N. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 2021, vol. 49, pp. 271–295. DOI: 10.1016/j.mattod.2021.03.020. 3. Saeidi K., Gao X., Zhong Y., Shen Z.J. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Materials Science and Engineering: A, 2015, vol. 625, pp. 221–229. DOI: 10.1016/j. msea.2014.12.018. 4. Bartolomeu F., Buciumeanu M., Pinto E., Alves N., Carvalho O., Silva F.S., Miranda G. 316L stainless steel mechanical and tribological behavior – A comparison between selective laser melting, hot pressing and conventional casting. Additive Manufacturing, 2017, vol. 16, pp. 81–89. DOI: 10.1016/j.addma.2017.05.007. 5. Alvarez P., Montealegre M.Á., Pulido-Jiménez J.F., Arrizubieta J.I. Analysis of the process parameter influence in laser cladding of 316L stainless steel. Journal of Manufacturing and Materials Processing, 2018, vol. 2 (3), p. 55. DOI: 10.3390/jmmp2030055. 6. Pinkerton A.J. Lasers in additive manufacturing. Optics & Laser Technology, 2016, vol. 78, pp. 25–32. DOI: 10.1016/j.optlastec.2015.09.025. 7. Goodarzi D.M., Pekkarinen J., Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry. Welding in the World, 2017, vol. 61 (5), pp. 883–891. DOI: 10.1007/s40194-017-0495-0. 8. Dutta B. Directed Energy Deposition (DED) Technology. Encyclopedia of Materials: Metals and Alloys, 2022, vol. 3, pp. 66–84. DOI: 10.1016/B978-0-12-819726-4.00035-1. 9. Shah K., Izhar ul Haq, Khan A., Shah Sh.A., Khan M., Pinkerton A.J. Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition. Materials & Design, 2014, vol. 54, pp. 531–538. DOI: 10.1016/j.matdes.2013.08.079. 10. Carroll B.E., Otis R.A., Borgonia J.P., Suh J., Dillon R.P., ShapiroA.A., Hofmann D.C., Liu Z.-K., BeeseA.M. Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling. Acta Materialia, 2016, vol. 108, pp. 46–54. DOI: 10.1016/j. actamat.2016.02.019. 11. Wu D., Liang X., Li Q., Jiang L. Laser rapid manufacturing of stainless steel 316L/Inconel718 functionally graded materials: microstructure evolution and mechanical properties. International Journal of Optics, 2010, vol. 2010, p. 802385. DOI: 10.1155/2010/802385. 12. Chen B., Su Y., Xie Zh., Tan C., Feng J. Development and characterization of 316L/Inconel 625 functionally graded material fabricated by laser direct metal deposition. Optics & Laser Technology, 2020, vol. 123, p. 105916. DOI: 10.1016/j.optlastec.2019.105916. 13. Mei X., Wang X., Peng Y., Gu H., Zhong G., Sh Y. Interfacial characterization and mechanical properties of 316L stainless steel/inconel 718 manufactured by selective laser melting. Material Science and Engineering: A, 2019, vol. 758, pp. 185–191. DOI: 10.1016/j.msea.2019.05.011. 14. El Cheikh H., Courant B., Branchu S., Hascoët J.-Y., Guillén R. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process. Optics and Laser in Engineering, 2012, vol. 50 (3), pp. 413–422. DOI: 10.1016/j.optlaseng.2011.10.014. 15. Zhao Y., Guan Ch., Chen L., Sun J., Yu T. Effect of process parameters on the cladding track geometry fabricated by laser cladding. Optik, 2020, vol. 223, p. 165447. DOI: 10.1016/j.ijleo.2020.165447. 16. Saboori A., Piscopo G., Lai M., Salmi A., Biamino S. An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition. Materials Science and Engineering: A, 2020, vol. 780, p. 39179. DOI: 10.1016/j.msea.2020.139179. 17. Balit Y., Joly L.-R., Szmytka F., Durbecq S., Charkaluk E., Constantinescu A. Self-heating behavior during cyclic loadings of 316L stainless steel specimens manufactured or repaired by Directed Energy Deposition. Materials Science and Engineering: A, 2020, vol. 786, p. 139476. DOI: 10.1016/j.msea.2020.139476. 18. Margerit P., Weisz-Patrault D., Ravi-Chandar K., Constantinescu A. Tensile and ductile fracture properties of as-printed 316L stainless steel thin walls obtained by directed energy deposition. Additive Manufacturing, 2021, vol. 37, p. 101664. DOI: 10.1016/j.addma.2020.101664. 19. Azinpour E., Darabi R., Sa J.C. de, Santos A., Hodek J., Dzugan J. Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach. Finite Elements in Analysis and Design, 2020, vol. 177, p. 103417. DOI: 10.1016/j.finel.2020.103417. 20. Feenstra D.R., Cruz V., Gao X., Molotnikov A., Birbilis N. Effect of build height on the properties of large format stainless steel 316L fabricated via directed energy deposition. Additive Manufacturing, 2020, vol. 34, p. 101205. DOI: 10.1016/j.addma.2020.101205.

RkJQdWJsaXNoZXIy MTk0ODM1