Determination of the rate of electrochemical dissolution of U10A steel under ECM conditions with a stationary cathode-tool

OBRABOTKAMETALLOV technology Vol. 26 No. 2 2024 where εV is the volumetric electrochemical equivalent of steel U10A, cm3/A∙min (0.00225198 cm3/A∙min); U is the voltage at the electrodes, V (8 V); θ is the specific electrical conductivity of the electrolyte cm∙m-1, (12.11 cm∙m-1) [31–32]; ƞ is the current output coefficient; a 0 is the interelectrode gap at the beginning of processing or end-to-end gap, mm (0.1 mm); τ is the processing time or electrolysis time, min (3 min). Then the rate of electrochemical dissolution at the end of the 3rd minute is 0.2232 mm/min. Maintaining this rate of electrochemical dissolution requires the interelectrode gap and other parameters affecting the performance of the process to remain unchanged. The hole depth at DECM in 3 minutes in 10 % NaCl in the scheme with a fixed cathode instrument was 0.574 mm. Conclusion The results of the work demonstrate that the electrochemical dissolution of U10A tool steel in a 10 % aqueous NaCl solution occurs actively during the entire studied potential range. The highest current density is observed at a potential of φ = 8 V. Under the conditions of electrochemical shaping of the hole in the U10A tool steel in a 10 % aqueous NaCl solution with a fixed hollow circular cathode tool with outer and inner diameters of 0.908 mm and 0.603 mm, respectively (the area of the outlet is 0.362∙10-6 m2), the current output was 70.83 %. The experimental data obtained made it possible to determine the main parameter of the DECM mode: the rate of electrochemical dissolution of U10A steel at 8 V and a pressure of 0.1 MPa in a 10 % aqueous NaCl solution for electrochemical shaping conditions with a hollow cathode tool, which is 0.2232 mm/min. The conducted studies allowed us to form recommendations regarding the supply of the cathode tool, which ensures the maximum rate of electrochemical dissolution of U10A steel in a 10 % aqueous NaCl solution. References 1. Dubrovina N.A., Rotman E.G. Osnovnye faktory ekonomii resursov na predpriyatiyakh mashinostroeniya [The basic factors of resource saving on the enterpises of mechanical engineering]. Vestnik Samarskogo gosudarstvennogo universiteta. Seriya: Ekonomika i upravlenie = Vestnik of Samara State University. Series: Economics and Management, 2012, no. 10, pp. 20–26. 2. Emelyanova D.S., Kolesnichenko-Ianushev S.L., Tokarev M.A. Organizational and economic problems of applying quality management systems at engineering companies. Nauchno-tekhnicheskie vedomosti SPbGPU. Ekonomicheskie nauki = St. Petersburg State Polytechnical University Journal. Economics, 2019, vol. 12, no. 2, pp. 92–102. DOI: 10.18721/JE.12209. 3. Avdeev S.V., Zolkin A.L., Podolko P.M. Analiz strategicheskikh trendov razvitiya promyshlennosti [Analysis of strategic trends in industrial development]. Ekonomika i predprinimatel’stvo = Journal of Economy and entrepreneurship, 2023, no. 9, pp. 455–458. DOI: 10.34925/EIP.2023.158.09.083. 4. Belorusova N., Studenikina S. Vliyanie normirovaniya na effektivnost’ ispol’zovaniya material’nykh resursov [The effect of normalization on the efficiency of using material resources]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya D, Ekonomicheskie i yuridicheskie nauki = Vestnik of Polotsk State University. Part D. Economic and legal sciences, 2019, no. 5, pp. 32–35. 5. Mrugalska B., Ahmed J. Organizational agility in industry 4.0: a systematic literature review. Sustainability, 2021, vol. 13, pp. 1–23. DOI: 10.3390/su13158272. 6. Pimenova E.M.,ArutyunyanA.A. Berezhlivoe proizvodstvo kak odin iz sposobov povysheniya ekonomicheskoi bezopasnosti predpriyatiya [Leanmanufacturing as a path toward greater business security]. Kreativnaya ekonomika = Journal of Creative Economy, 2023, vol. 17, no. 11, pp. 4141–4152. DOI: 10.18334/ce.17.11.119405. 7. Fernandes M., Correia D., Teixeira L. Lean maintenance practices in the improvement of information management processes: a study in the Facility. Procedia Computer Science, 2024, vol. 232, pp. 2269–2278. DOI: 10.1016/j.procs.2024.02.046. 8. Karch S., Lüder A., Listl C., Nowacki N.S., Hassan K., Werner R., Hohmann T., Müller S. Lean Engineering – Identifying waste in engineering chains. Procedia CIRP, 2023, vol. 120, pp. 463–468. DOI: 10.1016/j. procir.2023.09.020.

RkJQdWJsaXNoZXIy MTk0ODM1