Determination of the rate of electrochemical dissolution of U10A steel under ECM conditions with a stationary cathode-tool

OBRABOTKAMETALLOV Vol. 26 No. 2 2024 technology 9. Suetina T.A., Odinokov M.Y., Safina D.M. Benefits of project management at lean manufacturing tools implementation. Asian Social Science, 2014, vol. 10 (20), pp. 62–66. DOI: 10.5539/ass.v10n20p62. 10. Sundararajan N., Terkar R. Imp roving productivity in fastener manufacturing through the application of Lean-Kaizen principles. Materials Today: Proceedings, 2022, vol. 62 (2), pp. 1169–1178. DOI: 10.1016/j. matpr.2022.04.350. 11. Botti L., Mora C., Regattieri A. Integrating ergonomics and lean manufacturing principles in a hybrid assembly line. Computers & Industrial Engineering, 2017, vol. 111, pp. 481–491. DOI: 10.1016/j.cie.2017.05.011. 12. Rahimyanov Kh.M., Krasilnikov B.A., Yanpolsky V.V., Krasilnikov D.B. Elektrokhimicheskaya obrabotka bezvol’framovykh tverdykh splavov [Electrochemical processing of tungsten carbide]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2010, no. 3 (48), pp. 3–7. 13. Zhang X., Huang R., Liu K., Kumar A.S., Deng H. Suppression of diamond tool wear in machining of tungsten carbide by combining ultrasonic vibration and electrochemical processing. Ceramics International, 2018, vol. 44, pp. 4142–4153. DOI: 10.1016/j.ceramint.2017.11.215. 14. Katiyar P.K., Randhawa N.S. A comprehensive review on recycling methods for cemented tungsten carbide scraps highlighting the electrochemical techniques. International Journal of Refractory Metals and Hard Materials, 2020, vol. 90, p. 105251. DOI: 10.1016/j.ijrmhm.2020.105251. 15. Denkena B., Krödel A., Lang R. Fabrication and use of Cu-Cr-diamond composites for the application in deep feed grinding of tungsten carbide. Diamond and Related Materials, 2021, vol. 120, p. 108668. DOI: 10.1016/j. diamond.2021.108668. 16. Rakhimyanov Kh.M., Yanpolskiy V.V., Yusupov A.S. Struinaya elektrokhimicheskaya obrabotka stali 110G13L [Jet electrochemical machining of the steel 110G13L]. Sistemy. Metody. Tekhnologii = Systems. Methods. Technologies, 2016, no. 2 (30), pp. 34–38. DOI: 10.18324/2077-5415-2016-2-34-38. 17. Liu Z., Qiu Z.J., Heng C., Qu N.S. Electrochemical micro drilling of stainless steel with tool electrode jump motion. Materials Science Forum, 2009, vol. 626–627, pp. 333–338. DOI: 10.4028/www.scientific.net/MSF.626627.333. 18. Anasane S.A., Bhattacharyya B. Experimental investigation on suitability of electrolytes for electrochemical micromachining of titanium. The International Journal of Advanced Manufacturing Technology, 2016, vol. 86, pp. 2147–2160. DOI: 10.1007/s00170-015-8309-2. 19. Singh R.P., Trehan R. Electrochemical machining and allied processes: a comprehensive review. Journal of Solid State Electrochemistry, 2023, vol. 27, pp. 3189–3256. DOI: 10.1007/s10008-023-05610-x. 20. Wang M., Zhang Y., He Z., Peng W. Deep micro-hole fabrication in EMM on stainless steel using disk microtool assisted by ultrasonic vibration. Journal of Materials Processing Technology, 2016, vol. 229, pp. 475–483. DOI: 10.1016/j.jmatprotec.2015.10.004. 21. Xu Z., Liu J., Zhu D., Qu N., Wu X., Chen X. Electrochemical machining of burn-resistant Ti40 alloy. Chinese Journal of Aeronautics, 2023, vol. 28, pp. 1263–1272. DOI: 10.1016/j.cja.2015.05.007. 22. Liu G., Gong Z., Yang Y., Shi J., Liu Y., Dou X., Li C. Electrochemical dissolution behavior of stainless steels with different metallographic phases and its effects on micro electrochemical machining performance. Electrochemistry Communications, 2024, vol. 160, pp. 1–13. DOI: 10.1016/j.elecom.2024.107677. 23. Zanjani M.Y., Hackert-Oschätzchen M., Martin A., Meichsner G., Edelmann J., Schubert A. Process control in jet electrochemical machining of stainless steel through inline metrology of current density. Micromachines, 2019, vol. 10, pp. 245–272. DOI: 10.3390/mi10040261. 24. Puchkov Yu.A., Poklad V.A., Shkretov Yu.P. A study of coatings on high-temperature nickel alloys by the potentiodynamic method. Metal Science and Heat Treatment, 2005, vol. 47, pp. 239–243. DOI: 10.1007/s11041005-0059-6. 25. Wang M.H., Liu W., Peng W. Multiphysics research in electrochemical machining of internal spiral hole. The International Journal of Advanced Manufacturing Technology, 2014, vol. 74, pp. 749–756. DOI: 10.1007/s00170014-5938-9. 26. Evans K.J., Rebak R.B. Repassivation potential of alloy 22 in chloride plus nitrate solutions using the potentiodynamic-galvanostatic-potentiostatic method. Materials Research Society Symposia Proceedings, 2006, vol. 985, pp. 1–7. DOI: 10.1557/PROC-985-0985-NN03-13. 27. Davydov A.D., Volgin V.M., Lyubimov V.V. Electrochemical machining of metals: Fundamentals of electrochemical shaping. Russian Journal of Electrochemistry, 2004, vol. 40, pp. 1230–1265. DOI: 10.1007/s11175005-0045-8.

RkJQdWJsaXNoZXIy MTk0ODM1