The study of vibration disturbance mapping in the geometry of the surface formed by turning

OBRABOTKAMETALLOV Vol. 26 No. 2 2024 124 EQUIPMENT. INSTRUMENTS 5. Gao W., Ibaraki S., Donmez M.A., Kono D., Mayer J.R.R., Chen Y.-L., Szipka K., Archenti A., Linares J.- M., Suzuki N. Machine tool calibration: Measurement, modeling, and compensation of machine tool errors International. International Journal of Machine Tools and Manufacture, 2023, vol. 187, p. 104017. DOI: 10.1016/j. ijmachtools.2023.104017. 6. Estman L., Merdol D., Brask K.-G., Kalhori V., Altintas Y. Development of machining strategies for aerospace components, using virtual machining tools. New Production Technologies in Aerospace Industry. Cham, Springer, 2014, pp. 63–68. DOI: 10.1007/978-3-319-01964-2_9. 7. Kilic Z.M., Altintas Y. Generalized mechanics and dynamics of metal cutting operations for unifi ed simulations. International Journal of Machine Tools and Manufacture, 2016, vol. 104, pp. 1–13. DOI: 10.1016/j. ijmachtools.2016.01.006. 8. Soori M., Arezoo B. Virtual machining systems for CNC milling and turning machine tools: a review. International Journal of Engineering and Technology, 2020, vol. 18, pp. 56–104. 9. Lin M.-T., Huang T.-Y., Tsai M.-S., Wu S.-K. Virtual simulation of fi ve-axis machine tool with consideration of CNC interpolation, servo dynamics, friction, and geometric errors. Journal of the Chinese Institute of Engineers, 2017, vol. 40 (7), pp. 1–12. DOI: 10.1080/02533839.2017.1372221. 10. Lee C., Hwang S., Nam E., Min В. Identifi cation of mass and sliding friction parameters of machine tool feed drive using recursive least squares method. International Journal of Advanced Manufacturing Technology, 2020, vol. 109, pp. 2831–2844. DOI: 10.1007/s00170-020-05858-x. 11. Duvedi R.K., Bedi S., Batish A., Mann S. A multipoint method for 5-axis machining of triangulated surface models. Computer-Aided Design, 2014, vol. 52, pp. 17–26. DOI: 10.1016/j.cad.2014.02.008. 12. Gan V.F., Fu J.Z., Shen H.Yu., Chen Z.Yu., Lin Z.V. Five-axis tool path generation in CNC machining of T-spline surfaces. Computer-Aided Design, 2014, vol. 52, pp. 51–63. DOI: 10.1016/j.cad.2014.02.013. 13. Kiswanto G., Hendriko H., Duk E. An analytical method for obtaining cutter workpiece engagement during a semi-fi nish in fi ve-axis milling. Computer-Aided Design, 2014, vol. 55, pp. 81–93. DOI: 10.1016/j.cad.2014.05.003. 14. Tieng H., Yang H.C., Hung M.H., Cheng F.T. A novel virtual metrology scheme for predicting machining precision of machine tools. IEEE International Conference on Robotics and Automation. IEEE, 2013, pp. 264–269. DOI: 10.1109/ICRA.2013.6630586. 15. Wu D., Rosen D.W., Wang L., Schaefer D. Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 2015, vol. 59, pp. 1–14. DOI: 10.1016/j. cad.2014.07.006. 16. Yang J., Guo G. Design a new manufacturing model: cloud manufacturing. Proceedings of the 2012 International Conference on Cybernetics and Informatics. New York, Springer, 2014, pp. 1597–1606. DOI: 10.1007/978-1-4614-3872-4_205. 17. Sulitka M., Kolar P., Sveda J., Smolik J. Strategy for implementating predictive process-oriented machine tool digital twins. MM Science Journal, 2022, vol. 10, pp. 5954–5961. DOI: 10.17973/mmsj.2022_10_2022121. 18. Kabaldin Yu.G., Shatagin D.A., Anosov M.S., Kuzmishina A.M. Razrabotka tsifrovogo dvoinika stanka s ChPU na osnove metodov mashinnogo obucheniya [Development of digital twin of CNC unit based on machine learning methods]. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta = Vestnik of Don State Technical University, 2019, no. 19 (1), pp. 45–55. DOI: 10.23947/1992-5980-2019-19-1-45-55. 19. Kabaldin Yu.G., Shatagin D.A., Kuzmishina A.M. Razrabotka tsifrovogo dvoinika rezhushchego instrumenta dlya mekhanoobrabatyvayushchego proizvodstva [The development of a digital twin of a cutting tool for mechanical production]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = Proceedings of Higher Educational Institutions. Machine Building, 2019, no. 4, pp. 11–17. DOI: 10.18698/0536-1044-2019-4-11-17. 20. Pantyukhin O.V., Vasin S.A. Tsifrovoi dvoinik tekhnologicheskogo protsessa izgotovleniya izdelii spetsial’nogo naznacheniya [Digital double of the technological process of manufacturing special-purpose products]. Stankoinstrument, 2021, no. 1 (22), pp. 56–59. DOI: 10.22184/2499-9407.2021.22.1.56.58. (In Russian). 21.BurlachenkoO.V.,OganesyanO.V.Tsifrovaya tekhnologiyavybora i transformatsii informatsii dlyaupravleniya i podderzhki zhiznennogo tsikla izdeliya [Digital technology of information selection and transformation for product life cycle management and support]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = Proceedings of Higher Educational Institutions. Machine Building, 2023, no. 3 (756), pp. 3–13. DOI: 10.18698/0536-1044-20233-3-13. 22. Zakovorotniy V.L., Pham D.T., Nguyen X.C., Ryzhkin M.N. Modelirovanie dinamicheskoi svyazi, formiruemoi protsessom tocheniya, v zadachakh dinamiki protsessa rezaniya (pozitsionnaya svyaz’) [Dynamic coupling modeling formed by turning in cutting dynamics problems (positional coupling)]. Vestnik Donskogo

RkJQdWJsaXNoZXIy MTk0ODM1