Influence of dynamic characteristics of the turning process on the workpiece surface roughness

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 6 2 4 8. Benga G.C., Abrao A.M. Turning of hardened 100Cr6 bearing steel with ceramic and PCBN cutting tools. Journal of Materials Processing Technology, 2003, vol. 143, pp. 237–241. DOI: 10.1016/S0924-0136(03)00346-7. 9. Choudhury I.A., El-Baradie M.A. Surface roughness prediction in the turning of high-strength steel by factorial design of experiments. Journal of Materials Processing Technology, 1997, vol. 67, pp. 55–61. DOI: 10.1016/S09240136(96)02818-X. 10. Upadhyay V., Jain P.K., Mehta N.K. In-process prediction of surface roughness in turning of Ti–6Al–4V alloy using cutting parameters and vibration signals. Measurement, 2013, vol. 46 (1), pp. 154–160. DOI: 10.1016/j. measurement.2012.06.002. 11. Hahn R.S. On the theory of regenerative chatter in precision grinding operation. Transactions of American Society of Mechanical Engineers, 1954, vol. 76, pp. 356–260. 12. Merritt H.E. Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research. Journal of Engineering for Industry, 1965, vol. 87, pp. 447–454. DOI: 10.1115/1.3670861. 13. Tobias S.A., Fishwick W. Theory of regenerative machine tool chatter. The Engineer, 1958, vol. 205 (7), pp. 199–203. 14. Litak G. Chaotic vibrations in a regenerative cutting process. Chaos Solitons & Fractals, 2002, vol. 13, pp. 1531–1535. DOI: 10.1016/S0960-0779(01)00176-X. 15. Zakovorotny V., Gvindjiliya V. Correlation of attracting sets of tool deformations with spatial orientation of tool elasticity and regeneration of cutting forces in turning. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30 (1), pp. 37–56. DOI: 10.18500/0869-6632-2022-30-1-37-56. 16. Persson H., Agmell M., Bushlya V., Stahl J. Experimental and numerical investigation of burr formation in intermittent turning of AISI 4140. Procedia CIRP, 2017, vol. 58, pp. 37–42. DOI: 10.1016/j.procir.2017.03.165. 17. Patel K.A., Brahmbhatt P.K. A comparative study of the RSM and ANN models for predicting surface roughness in roller burnishing. Procedia Technology, 2016, vol. 23, pp. 391–397. DOI: 10.1016/j.protcy.2016.03.042. 18. Alam S.T., Tomal A.N.M., NayeemM.K. High-speed machining of Ti–6Al–4V: RSM-GA based optimization of surface roughness andMRR. Results in Engineering, 2023, vol. 17, p. 100873. DOI: 10.1016/j.rineng.2022.100873. 19. Abu-Mahfouz I., Rahman A.H.M.E., Banerjee A. Surface roughness prediction in turning using three artificial intelligence techniques: A comparative study. Procedia Computer Science, 2018, vol. 140, pp. 258–267. DOI: 10.1016/j.procs.2018.10.322. 20. Laghari R.A., Samir M. Comprehensive approach toward IIoT based condition monitoring of machining processes. Measurement, 2023, vol. 217, p. 113004. DOI: 10.1016/j.measurement.2023.113004. 21. Altintas Y., Kersting P., Biermann D., Budak E., Denkena B. Virtual technological systems for parts processing operations. CIRP Annals, 2014, vol. 63 (2), pp. 585–605. DOI: 10.1016/j.cirp.2014.05.007. 22. Altintas Y., Eynian M., Onozuka H. Identification of dynamic cutting force coefficients and chatter stability with process damping. CIRP Annals, 2008, vol. 57 (1), pp. 371–374. DOI: 10.1016/j.cirp.2008.03.048. 23. Altintas Y., Tuysuz O., Habibi M., Li Z.L. Virtual compensation of deflection errors in ball end milling of flexible blades. CIRP Annals, 2008, vol. 57 (1), pp. 371–374. DOI: 10.1016/j.cirp.2008.03.048. 24. Kabaldin Y.G., Shatagin D.A., Kuzmishina A.M. The development of a digital twin of a cutting tool for mechanical production. Proceedings of Higher Educational Institutions. Machine Building, 2019, vol. 4, pp. 11–17. DOI: 10.18698/0536-1044-2019-4-11-17. 25. Voronov S.A., Kiselev I.A. Nelineinye zadachi dinamiki protsessov rezaniya [Nonlinear problems of cutting process dynamics]. Mashinostroenie i inzhenernoe obrazovanie = Mechanical Engineering and Engineering Education, 2017, no. 2 (51), pp. 9–23. 26. Zakovorotny V.L., Bordachev E.V. Prognozirovanie i diagnostika kachestva obrabatyvaemoi detali na tokarnykh stankakh s ChPU [Prediction and diagnostics of the quality of the workpiece on CNC lathes]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = Proceedings of Higher Educational Institutions. Machine Building, 1996, no. 1, pp. 95–104. 27. Zakovorotny V.L., Gvindzhiliya V.E. Influence of spindle wobble in turning on the workpiece’s surface topology. Russian Engineering Research, 2018, vol. 38, pp. 818–823. DOI: 10.3103/S1068798X18100192. 28. Zakovorotny V.L., Lukyanov A.D., Gubanova A.A., Hristoforova V.V. Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting. Journal of Sound and Vibration, 2016, vol. 368, pp. 174–190. DOI: 10.1016/j.jsv.2016.01.020. 29. Sankin Yu.N., Sankin N.Yu. Ustoichivost’ tokarnykh stankov pri nelineinoi kharakteristike protsessa rezaniya [Stability of lathes with nonlinear characteristics of the cutting process]. Ulyanovsk, UlSTU Publ., 2008. 137 p. 30. ZakovorotnyV.L., GvindjiliyaV.E. Zavisimost’iznashivaniya instrumenta i parametrovkachestva formiruemoi rezaniem poverkhnosti ot dinamicheskikh kharakteristik [The dependence of tool wear and quality parameters of the

RkJQdWJsaXNoZXIy MTk0ODM1