Design simulation of modular abrasive tool

OBRABOTKAMETALLOV Vol. 26 No. 2 2024 171 EQUIPMENT. INSTRUMENTS Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 1, pp. 33–47. DOI: 10.17212/1994-6309-2022-24.1-33-47. 3. SkripnyakE.G., LobanovD.V., SkripnyakV.V.,YanyushkinA.S., SkripnyakV.A., RychkovD.A. Keramicheskie nanokompozity na osnove diborida tsirkoniya [Ceramic nanocomposites on the basis of zirconium diboride]. Sistemy. Metody. Tekhnologii = Systems. Methods. Technologies, 2011, no. 2, pp. 95–98. 4. Sayutin G.I., Nosenko V.A., Bogomolov N.I. Vybor instrumenta i SOZh pri shlifovanii titanovykh splavov [Choice of tools and coolant for grinding titanium alloys]. Stanki i instrument = Machines and Tooling, 1981, no. 11, pp. 15–17. (In Russian). 5. Smagin G.I., Filimonenko V.N., Yakovlev N.D., Korchagin M.A., Skeeba V.Y. Shlifoval’nyi instrument na osnove silikokarbida titana [The grinding tool on a basis titan silicon karbid]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2011, no. 1 (50), pp. 27–30. 6. Novoselov Yu.K., Bratan S.M., Bogutskii V.B. Vliyanie sluchainoi sostavlyayushchei otklonenii profi lya instrumenta na dinamiku protsessa kruglogo naruzhnogo shlifovaniya [Eff ect of random component in tool profi le deviations upon dynamics of external circular grinding]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2016, no. 5 (59), pp. 10–17. 7. Smirnov V.M., Lobanov D.V., Skeeba V.Yu., Golyushov I.S. Povyshenie eff ektivnosti kontsevogo almaznogo abrazivnogo instrumenta na metallicheskoi svyazke za schet sovershenstvovaniya tekhnologii izgotovleniya [Improving the effi ciency of metal-bonded diamond abrasive end tools by improving manufacturing technology]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 2, pp. 66–80. DOI: 10.17212/1994-6309-2021-23.2-66-80. 8. Popov A.Yu., Rechenko D.S., Averkov K.V., Sergeev V.A. Vysokoskorostnoe shlifovanie zharoprochnogo nikelevogo splava ZhS6-K [High-speed grinding of ZhS6-K high-temperature nickel alloy]. STIN = Russian Engineering Research, 2012, no. 2, pp. 32–34. (In Russian). 9. Makarov V.M. Kompleksirovannye tekhnologicheskie sistemy: perspektivy i problemy vnedreniya [Well integrated technological systems: prospects and problems of implementation]. Ritm: Remont. Innovatsii. Tekhnologii. Modernizatsiya = RITM: Repair. Innovation. Technologies. Modernization, 2011, no. 6 (64), pp. 20–23. 10. Yanyushkin A.S., Lobanov D.V., Arkhipov P.V. Research of infl uence of electric conditions of the combined electro-diamond machining on quality of grinding of hard alloys. IOP Conference Series: Materials Science and Engineering, 2015, vol. 91, p. 012051. DOI: 10.1088/1757-899X/91/1/012051. 11. Mitsuishi M., Ueda K., Kimura F. Manufacturing systems and technologies for the new frontier: the 41st CIRP Conference on Manufacturing Systems, May 26–28, Tokyo. London, Springer-Verlag, 2008. 556 p. ISBN 9781-84800-267-8. DOI: 10.1007/978-1-84800-267-8. 12. Lauwers B., Klocke F., Klink A., Tekkaya A.E., Neugebauer R., Mcintosh D. Hybrid processes in manufacturing. CIRP Annals, 2014, vol. 63 (2), pp. 561–583. DOI: 10.1016/j.cirp.2014.05.003. 13. Garro О., Martin P., Veron M. Shiva a multiarms machine tool. CIRP Annals – Manufacturing Technology, 1993, vol. 42 (1), pp. 433–436. DOI: 10.1016/S0007-8506(07)62479-2. 14. Skeeba V.Yu. Gibridnoe tekhnologicheskoe oborudovanie: povyshenie eff ektivnosti rannikh stadii proektirovaniya kompleksirovannykh metalloobrabatyvayushchikh stankov [Hybrid process equipment: improving the effi ciency of the integrated metalworking machines initial designing]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 2, pp. 62–83. DOI: 10.17212/19946309-2019-21.2-62-83. 15. Brecher C., Özdemir D. Integrative production technology: theory and applications. Cham, Springer International, 2017. 1100 p. ISBN 978-3-319-47451-9. ISBN 978-3-319-47452-6. DOI: 10.1007/978-3-319-47452-6. 16. Moriwaki T. Multi-functional machine tool. CIRP Annals – Manufacturing Technology, 2008, vol. 57 (2), pp. 736–749. DOI: 10.1016/j.cirp.2008.09.004. 17. Ivantsivsky V.V., Skeeba V.Yu. Gibridnoe metalloobrabatyvayushchee oborudovanie. Tekhnologicheskie aspekty integratsii operatsii poverkhnostnoi zakalki i abrazivnogo shlifovaniya [Hybrid metal working equipment. Technological aspects of integrating the operations of surface hardening and abrasive grinding]. Novosibirsk, NSTU Publ., 2019. 348 p. ISBN 978-5-7782-3988-3. 18. Yamazaki T. Development of a hybrid multi-tasking machine tool: integration of additive manufacturing technology with CNC machining. Procedia CIRP, 2016, vol. 42, pp. 81–86. DOI: 10.1016/j.procir.2016.02.193. 19. Sun S., Brandt M., Dargusch M.S. Thermally enhanced machining of hard-to-machine materials – A review. International Journal of Machine Tools and Manufacture, 2010, vol. 50 (8), pp. 663–680. DOI: 10.1016/ j.ijmachtools.2010.04.008.

RkJQdWJsaXNoZXIy MTk0ODM1