Design simulation of modular abrasive tool

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. 6 No. 2 2024 27. Olsson M., Akujärvi V., Ståhl J.-E., Bushlya V. Cryogenic and hybrid induction-assisted machining strategies as alternatives for conventional machining of refractory tungsten and niobium. International Journal of Refractory Metals and Hard Materials, 2021, vol. 97, p. 105520. DOI: 10.1016/j.ijrmhm.2021.105520. 28. Boivie K., Karlsen R., Ystgaard P. The concept of hybrid manufacturing for high performance parts. South African Journal of Industrial Engineering, 2012, vol. 23, iss. 2, pp. 106–115. 29. Yanyushkin A.S., Rychkov D.A., Lobanov D.V., Popov V.Yu., Sur’ev A.A., Arkhipov P.V., Kuznetsov A.M., Medvedeva O.I. Abrazivnyi krug dlya elektrokhimicheskogo shlifovaniya s parallel’nym raspolozheniem tokoprovodyashchikh vstavok [Abrasive wheel for electrochemical grinding with parallel arrangement of conductive inserts]. Patent RF, no. 145108 U1, 2014. 30. Lobanov D.V., Arkhipov P.V., Yanyushkin A.S., Skeeba V.Yu. The research into the effect of conditions of combined electric powered diamond processing on cutting power. Key Engineering Materials, 2017, vol. 736, pp. 81–85. DOI: 10.4028/www.scientific.net/KEM.736.81. 31. Mishin V.A., Borisov M.A., Aleksandrov D.V. Sposob elektroabrazivnoi obrabotki tokoprovodyashchim krugom [Method of electroabrasive processing with a conductive wheel]. Patent RF, no. 2489236 C2, 2013. 32. Albagachiev A.Yu., Yashkov V.A. Vnutrennee shlifovanie na osnove sbornykh abrazivnykh krugov [Internal grinding based on prefabricated abrasive wheels]. Ritm: Remont. Innovatsii. Tekhnologii. Modernizatsiya = RITM: Repair. Innovation. Technologies. Modernization, 2014, no. 5 (93), pp. 102–104. 33. Kozlov A.M., Dolgikh P.P., Kosykh A.E. Vliyanie nesimmetrichnosti khvostovika na rabotu sbornogo preryvistogo shlifoval’nogo kruga [Effect nonsymmetric shank for work team flash grinding wheels]. Sovremennye fundamental’nye i prikladnye issledovaniya = Modern Fundamental and Applied Researches, 2011, no. 3, pp. 72–76. 34. Kosykh A.E. Vliyanie ugla povorota segmenta sbornogo kruga s uprugo-dempfiruyushchim elementom na proizvoditel’nost’ shlifovaniya [Effect of the angle of rotation of segment with elastic damping elements on grinding performance]. Fundamental’nye i prikladnye problemy tekhniki i tekhnologii = Fundamental and Applied Problems of Engineering and Technology, 2011, no. 2-3 (286), pp. 3–6. 35. Khudobin L.V., Muslina G.R., Pravikov Yu.M. Sbornye shlifoval’nye krugi i ikh tekhnologicheskie vozmozhnosti [Builld-up combined abrasive wheels and their the technology possibilities]. Spravochnik. Inzhenernyi zhurnal = Handbook. An Engineering Journal, 2019, no. 6, pp. 21–29. DOI: 10.14489/hb.2019.06.pp.021-029. 36. Bogutsky V.B. Otsenka primeneniya abrazivnogo instrumenta s preryvistoi poverkhnost’yu dlya zatochki instrumentov iz bystrorezhushchikh stalei [Evaluation of the application abrasive tool with a discontinuous surface for sharpening tools from high-speed steels]. Zhurnal tekhnicheskikh issledovanii = Journal of Technical Research, 2019, vol. 5, no. 4, pp. 3–8. 37. Roshchupkin S. Kharchenko A. Method of building dynamic relations, estimating product and grinding circle shape deviations. MATEC Web of Conferences, 2018, vol. 224, p. 01001. DOI: 10.1051/matecconf/ 201822401001. 38. Kozlov A.M., Kosykh A.E. Opredelenie kriticheskoi shiriny segmenta sbornykh preryvistykh shlifoval’nykh krugov [Definition of critical width in segment of collection intermittent grinding disks]. Fundamental’nye i prikladnye problemy tekhniki i tekhnologii = Fundamental and Applied Problems of Engineering and Technology, 2011, no. 4-3, pp. 19–23. 39. DombrachevA.N. Razrabotka avtomatizirovannoi sistemy opredeleniya slozhnosti i prognoznoi trudoemkosti izgotovleniya detalei instrumental’nogo proizvodstva. Diss. kand. tekhn. nauk [Development of an automated system for determining the complexity and predictive labor intensity of manufacturing parts for tool production. PhD eng. sci. diss.]. Izhevsk, 2005. 128 p. 40. Goloburdin D.A., Kozlov A.M. [Analysis of abrasive intermittent cutting tools]. Za nami budushchee: vzglyad molodykh uchenykh na innovatsionnoe razvitie obshchestva [Proceedings of the All-Russian youth scientific conference “The future is ours: the view of young scientists on the innovative development of society”]. Kursk, 2020, vol. 3, pp. 227–231. (In Russian). 41. Rechenko D.S. Povyshenie kachestva vysokoskorostnogo zatachivaniya tverdosplavnykh instrumentov almaznymi krugami s preryvistoi poverkhnost’yu. Diss. kand. tekhn. nauk [Improving the quality of high-speed sharpening of carbide tools with diamond wheels with an intermittent surface. PhD eng. sci. diss.]. Omsk, 2009. 162 p. 42. Lukina S.V. Povyshenie effektivnosti proektirovaniya sbornogo rezhushchego instrumenta na baze ustanovlennykh vzaimosvyazei konstruktorsko-tekhnologicheskikh i ekonomicheskikh reshenii. Diss. dokt. tekhn. nauk [Increasing the efficiency of designing prefabricated cutting tools on the basis of established relationships between design, technological and economic solutions. Dr. eng. sci. diss.]. Moscow, 1999. 448 p. 43. Lyalin V.E. Matematicheskie modeli i intellektual’nye informatsionnye tekhnologii dlya povysheniya effektivnosti organizatsii proizvodstva. Avtoref. diss. dokt. ekon. nauk [Mathematical models and intelligent

RkJQdWJsaXNoZXIy MTk0ODM1