The influence of technological parameters of the laser engineered net shaping process on the quality of the formed object from titanium alloy VT23

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 2 2024 Conclusion 1. The determination of the LENS modes of VT23 alloy is conducted, allowing the synthesis of objects without cracks, with minimal both porosity and surface roughness, with the specified level of fusion coefficient: laser power P = 700…1.100 W; scanning speed v = 800…1,000 mm/min; the distance between tracks is 0.5…0.7 of the width of the track. 2. Optical metallography revealed that after all experimental LENS modes, the structure of the titanium alloy resemble a “basket weave” pattern with dispersed α- and β-phase needle-shaped grains. 3. According to X-ray phase analysis, phase composition of VT23 alloy doesn’t depend on modes and consists of 70 % α-phase and 30 % β-phase. 4. Durometric analysis showed that increasing the laser power results in the microhardness increase of the individual tracks: for a scanning speed of 800 mm/min, increasing the power from 700 to 1.300 W results in the hardness increasing from 390 to 500 HV. However, the increase in power practically does not affect the hardness of monolayers and bulk specimens, maintaining it at an average level of 460 HV. References 1. Belov S.P., Brun M.Ya., Glazunov S.G., Kolachev B.A. Metallovedenie titana i ego splavov [Metallurgy of titanium and its alloys]. Moscow, Metallurgiya Publ., 1992. 352 p. 2. Liu Z., He B., Lyu T., Zou Y. A review on additive manufacturing of titanium alloys for aerospace applications: Directed energy deposition and beyond Ti-6Al-4V. Jom, 2021, vol. 73, pp. 1804–1818. DOI: 10.1007/s11837-02104670-6. 3. Dang L., He X., Tang D., Wu B., Li Y. A fatigue life posterior analysis approach for laser-directed energy deposition Ti-6Al-4V alloy based on pore-induced failures by kernel ridge. Engineering Fracture Mechanics, 2023, vol. 289, p. 109433. DOI: 10.1016/j.engfracmech.2023.109433. 4. Ronzhin D.A., Grigoryants A.G., Kholopov A.A. Vliyanie tekhnologicheskikh parametrov na strukturu metalla izdelii, poluchennykh metodom pryamogo lazernogo vyrashchivaniya iz titanovogo poroshka VT6 [Effect of operational parameters on metal structure in products manufactured by direct laser deposition from VT6 titanium powder]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = BMSTU Journal of Mechanical Engineering, 2022, no. 9 (750), pp. 30–42. 5. Ravi G.A., Qiu C., Attallah M.M. Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition. Materials Letters, 2016, vol. 179, pp. 104–108. DOI: 10.1016/j. matlet.2016.05.038. 6. MahamoodR.M.,Akinlabi E.T. Laser power and powder flowrate influence on themetallurgy andmicrohardness of laser metal deposited titanium alloy. Materials Today: Proceedings, 2017, vol. 4 (2), pp. 3678–3684. 7. Safarova D.E., Lugovoi M.E., Ponkratova Yu.Yu., Bazaleeva K.O. [Development of a direct laser growth mode for titanium alloy VT23]. VIII Vserossiiskaya konferentsiya po nanomaterialam «NANO 2023» [Proceedings of the VIII All-Russian Conference on Nanomaterials “NANO 2023”]. Moscow, 2023, pp. 242–243. (In Russian). 8. Paydas H., Mertens A., Carrus R., Lecomte-Beckers J., Tchuindjang J.T. Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness. Materials & Design, 2015, vol. 85, pp. 497–510. DOI: 10.1016/j.matdes.2015.07.035. 9. Fatoba O.S., Akinlabi E.T., Akinlabi S.A., Erinosho M.F. Influence of process parameters on the mechanical properties of laser deposited Ti-6Al-4V alloy. Taguchi and response surface model approach. Materials Today: Proceedings, 2018, vol. 5 (9), pp. 19181–19190. DOI: 10.1016/j.matpr.2018.06.273. 10. Song L., Xiao H., Ye J., Li S. Direct laser cladding of layer-band-free ultrafine Ti6Al4V alloy. Surface and Coatings Technology, 2016, vol. 307, pp. 761–771. DOI: 10.1016/j.surfcoat.2016.10.007. 11. Sinclair L., Clark S.J., Chen Y., Marussi S., Shah S., Magdysyuk O.V., Lee P.D. Sinter formation during directed energy deposition of titanium alloy powders. International Journal of Machine Tools and Manufacture, 2022, vol. 176, p. 103887. DOI: 10.1016/j.ijmachtools.2022.103887. 12. Liu Q. Wang Y., Zheng H., Tang K., Li H., Gong S. TC17 titanium alloy laser melting deposition repair process and properties. Optics & Laser Technology, 2016, vol. 82. pp. 1–9. DOI: 10.1016/j.optlastec.2016.02.013. 13. Wang T., Zhu Y.Y., Zhang S.Q., Tang H.B., Wang H.M. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. Journal of Alloys and Compounds, 2015, vol. 632, pp. 505–513. DOI: 10.1016/j.jallcom.2015.01.256.

RkJQdWJsaXNoZXIy MTk0ODM1