Study of Fe-matrix composites with carbide strengthening, formed by sintering of iron titanides and carbon mechanically activated mixtures

OBRABOTKAMETALLOV Vol. 26 No. 2 2024 222 MATERIAL SCIENCE References 1. Parashivamurthy K.I., Kumar R.K., Seetharamu S., Chandrasekharaiah M.N. Review on TiC reinforced steel composites. Journal of Materials Science, 2001, vol. 36 (18), pp. 4519–4530. DOI: 10.1023/A:1017947206490. 2. Parashivamurthy K.I., Sampathkumaran P., Seetharamu S. Wear behavior of Fe–TiC composites. International Conference on Advances in Manufacturing Engineering – 2007, ICAME-2007, Manipal Institute of Technology, Manipal, Karnataka, India, 2007, pp. 73–78. 3. Srivastava A.K., Das K. The abrasive wear resistance of TiC and (Ti,W)C-reinforced Fe–17Mn austenitic steel matrixcomposites. Tribology International, 2010, vol. 43(5–6), pp. 944–950.DOI: 10.1016/J.TRIBOINT.2009.12.057. 4. Olejnik E., Szymański Ł., Batóg P., Tokarski T., Kurtyka P. TiC–FeCr local composite reinforcements obtained in situ in steel casting. Journal of Materials Processing Technology, 2020, vol. 275, p. 116157. DOI: 10.1016/j. jmatprotec.2019.03.017. 5. Hu S.W., Zhao Y.G., Wang Z., Li Y.G., Jiang Q.C. Fabrication of in situ TiC locally reinforced manganese steel matrix composite via combustion synthesis during casting. Materials and Design, 2013, vol. 44, pp. 340–345. DOI: 10.1016/j.matdes.2012.07.063. 6. He S., Fan X., Chang Q., Xiao L. TiC–Fe-based composite coating prepared by self-propagating hightemperature synthesis. Metallurgical and Materials Transactions B, 2017, vol. 48 (3), pp. 1748–1753. DOI: 10.1007/s11663-017-0942-8. 7. Zheng Y., Zhou Y., Feng Y., Teng X., Yan S., Li R., Yu W., Huang Z., Li S., Li Z. Synthesis and mechanical properties of TiC–Fe interpenetrating phase composites fabricated by infi ltration process. Ceramics International, 2018, vol. 44 (17), pp. 21742–21749. DOI: 10.1016/j.ceramint.2018.08.268. 8. Lin T., Guo Y., Wang Z., Shao H., Lu H., Li F., He X. Eff ects of chromium and carbon content on microstructure and properties of TiC-steel composites. International Journal of Refractory Metals and Hard Materials, 2018, vol. 72, pp. 228–235. DOI: 10.1016/j.ijrmhm.2017.12.037. 9. Persson P., Jarfors A.E.W., Savage S. Self-propagating high-temperature synthesis and liquid-phase sintering of TiC/Fe composites. Journal of Materials Processing Technology, 2002, vol. 127 (2), pp. 131–139. DOI: 10.1016/ S0924-0136(02)00113-9. 10. Akhtar F., Guo S.J. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites. Materials Characterization, 2008, vol. 59 (1), pp. 84–90. DOI: 10.1016/j.matchar.2006.10.021. 11. Akhtar F., Guo S. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites. Acta Materialia, 2007, vol. 55 (4), pp. 1467–1477. DOI: 10.1016/j.actamat.2006.10.009. 12. Zhu H., Dong K., Wang H., Huang J., Li J., Xie Z. Reaction mechanisms of the TiC/Fe composite fabricated by exothermic dispersion from Fe–Ti–C element system. Powder Technology, 2013, vol. 246, pp. 456–461. DOI: 10.1016/J.POWTEC.2013.06.002. 13. Wang J., Wang Y., Ding Y. Reaction synthesis of Fe–(Ti,V)C composites. Journal of Materials Processing Technology, 2008, vol. 197 (1–3), pp. 54–58. DOI: 10.1016/j.jmatprotec.2007.06.016. 14. Jing W., Yisan W., Yichao D. Production of (Ti,V)C reinforced Fe matrix composites. Materials Science and Engineering: A, 2007, vol. 454–455, pp. 75–79. DOI: 10.1016/j.msea.2006.11.024. 15. Lee J., Lee D., Song M.H., Rhee W., Ryu H.J., Hong S.H. In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering. Journal of Materials Science and Technology, 2018, vol. 34 (8), pp. 1397–1404. DOI: 10.1016/j.jmst.2017.03.006. 16. Chen X., Zhain H., Wang W., Li S., Huang Z. A TiCχ reinforced Fe(Al) matrix composite using in-situ reaction. Progress in Natural Science: Materials International, 2013, vol. 23 (1), pp. 13–17. DOI: 10.1016/j. pnsc.2013.01.002. 17. Li B., Liu Y., Cao H., He L., Li J. Rapid fabrication of in situ TiC particulates reinforced Fe-based composites by spark plasma sintering. Materials Letters, 2009, vol. 63 (23), pp. 2010–2012. DOI: 10.1016/j.matlet.2009.06.026. 18. Yim D., Sathiyamoorthi P., Hong S.-J., Kim H.S. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering. Journal of Alloys and Compounds, 2019, vol. 781, pp. 389–396. DOI: 10.1016/j.jallcom.2018.12.119 0925-8388. 19. Fu Z.Y., Wang H., Wang W.M., Yuan R.Z. Composites fabricated by self-propagating high-temperature synthesis. Journal of Materials Processing Technology, 2003, vol. 137 (1–3), pp. 30–34. DOI: 10.1016/s09240136(02)01061-0. 20. Fadin V.V., Kolubaev A.V., Aleutdinova M.I. Kompozity na osnove karbida titana, poluchennogo metodom tekhnologicheskogo goreniya [Carbide titanium based composites, obtained by combustion process]. Perspektivnye materialy = Journal of Advanced Materials, 2011, no. 4, pp. 91–96. (In Russian).

RkJQdWJsaXNoZXIy MTk0ODM1