Study of Fe-matrix composites with carbide strengthening, formed by sintering of iron titanides and carbon mechanically activated mixtures

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 2 2024 Ta b l e 4 Elemental composition of carbide inclusions in sintered composites from a mechanically activated FeTi + C mixture (Fig. 4) Number of spectrum Content of elements, at. % Titanium Carbon Iron Others 6 59.80 32.90 7.30 – 5 43.57 32.16 24.27 – 2 34.64 30.16 21.87 13.34 (oxygen) Conclusions By sintering mechanically activated powder mixtures of iron titanides with carbon (carbon black), the composites were obtained, including, according to the results of X-ray diffraction analysis, titanium carbide and alpha iron. In the structure of a composite sintered from a Fe2Ti + C mixture, the main part of the carbide in the form of dispersed inclusions is localized in the volume of the steel binder. In a composite sintering from a FeTi + C mixture, the volume fraction of carbide is one and a half times higher than that of α-Fe. Thus, the metal binder in the composite No. 2 is present in the form of a mechanical mixture with titanium carbide. Due to the dispersion of the composites structure, it is difficult to determine the elemental composition of the structural components of sintering composites using EDX analysis. The granules of composite powders obtained by crushing of the sintering compacts are of interest as feedstocks for wear-resistant coating and additive technologies, as well as for manufactiring of dense materials by other compaction methods: spark plasma sintering or hot pressing. References 1. Parashivamurthy K.I., Kumar R.K., Seetharamu S., Chandrasekharaiah M.N. Review on TiC reinforced steel composites. Journal of Materials Science, 2001, vol. 36 (18), pp. 4519–4530. DOI: 10.1023/A:1017947206490. 2. Parashivamurthy K.I., Sampathkumaran P., Seetharamu S. Wear behavior of Fe–TiC composites. International Conference on Advances in Manufacturing Engineering – 2007, ICAME-2007, Manipal Institute of Technology, Manipal, Karnataka, India, 2007, pp. 73–78. 3. Srivastava A.K., Das K. The abrasive wear resistance of TiC and (Ti,W)C-reinforced Fe–17Mn austenitic steel matrixcomposites. Tribology International, 2010, vol. 43(5–6), pp. 944–950.DOI: 10.1016/J.TRIBOINT.2009.12.057. 4. Olejnik E., Szymański Ł., Batóg P., Tokarski T., Kurtyka P. TiC–FeCr local composite reinforcements obtained in situ in steel casting. Journal of Materials Processing Technology, 2020, vol. 275, p. 116157. DOI: 10.1016/j. jmatprotec.2019.03.017. 5. Hu S.W., Zhao Y.G., Wang Z., Li Y.G., Jiang Q.C. Fabrication of in situ TiC locally reinforced manganese steel matrix composite via combustion synthesis during casting. Materials and Design, 2013, vol. 44, pp. 340–345. DOI: 10.1016/j.matdes.2012.07.063. 6. He S., Fan X., Chang Q., Xiao L. TiC–Fe-based composite coating prepared by self-propagating hightemperature synthesis. Metallurgical and Materials Transactions B, 2017, vol. 48 (3), pp. 1748–1753. DOI: 10.1007/s11663-017-0942-8. 7. Zheng Y., Zhou Y., Feng Y., Teng X., Yan S., Li R., Yu W., Huang Z., Li S., Li Z. Synthesis and mechanical properties of TiC–Fe interpenetrating phase composites fabricated by infiltration process. Ceramics International, 2018, vol. 44 (17), pp. 21742–21749. DOI: 10.1016/j.ceramint.2018.08.268. 8. Lin T., Guo Y., Wang Z., Shao H., Lu H., Li F., He X. Effects of chromium and carbon content on microstructure and properties of TiC-steel composites. International Journal of Refractory Metals and Hard Materials, 2018, vol. 72, pp. 228–235. DOI: 10.1016/j.ijrmhm.2017.12.037. 9. Persson P., Jarfors A.E.W., Savage S. Self-propagating high-temperature synthesis and liquid-phase sintering of TiC/Fe composites. Journal of Materials Processing Technology, 2002, vol. 127 (2), pp. 131–139. DOI: 10.1016/ S0924-0136(02)00113-9.

RkJQdWJsaXNoZXIy MTk0ODM1