OBRABOTKAMETALLOV Vol. 26 No. 3 2024 23 TECHNOLOGY 38. Teidelt E., Starcevic J., Popov V.L. Infl uence of ultrasonic oscillation on static and sliding friction. Tribology Letters, 2012, vol. 48, pp. 51–62. DOI: 10.1007/s11249-012-9937-4. 39. Nigmetzyanov R.I., Sundukov S.K., Fatyukhin D.S. Ultrasonic assembly of press-fi t joints. Russian Engineering Research, 2017, vol. 37 (12), pp. 1044–1047. DOI: 10.3103/S1068798X17120139. 40. Nigmetzyanov R.I., Kazantsev V.F., Prikhod’ko V.M., Sundukov S.K., Fatyukhin D.S. Improvement in ultrasound liquid machining by activating cavitational clusters. Russian Engineering Research, 2019, vol. 39 (8), pp. 699–702. DOI: 10.3103/S1068798X19080112. 41. Sundukov S.K. Features of the superposition of ultrasonic vibrations in the welding process. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24 (2), pp. 50–66. DOI: 10.17212/1994-6309-2022-24.2-50-66. 42. Mason T.J. Ultrasonic cleaning: An historical perspective. Ultrasonics Sonochemistry, 2016, vol. 29, pp. 519– 523. DOI: 10.1016/j.ultsonch.2015.05.004. 43. Nolting B.E., Neppiras E.A. Cavitation produced by Ultrasonics. Proceedings of the Physical Society. Section B, 1950, vol. 63 (9), p. 674. DOI: 10.1088/0370-1301/63/9/305. 44. Fatyukhin D.S., Nigmetzyanov R.I., Prikhodko V.M., Sukhov A.V., Sundukov S.K. A comparison of the eff ects of ultrasonic cavitation on the surfaces of 45 and 40Kh steels. Metals, 2022, vol. 12 (1), p. 138. DOI: 10.3390/ met12010138. 45. Slama R.B.H., Gilles B., Chiekh M.B., Bera J.C. Characterization of focused-ultrasound-induced acoustic streaming. Experimental Thermal and Fluid Science. 2019, vol. 101, pp. 37–47. DOI: 10.1016/j. expthermfl usci.2018.10.001. 46. Kim G., Cheng S., Hong L., Kim J.-T., Li K.C., Chamorro L.P. On the acoustic fountain types and fl ow induced with focused ultrasound. Journal of Fluid Mechanics, 2021, vol. 909, p. R2. DOI: 10.1017/jfm.2020.1012. 47. Sajjadi B., Raman A.A.A., Ibrahim S. Infl uence of ultrasound power on acoustic streaming and microbubbles formations in a low frequency sono-reactor: Mathematical and 3D computational simulation. Ultrasonics Sonochemistry. 2015, vol. 24, pp. 193–203. DOI: 10.1016/j.ultsonch.2014.11.013. Confl icts of Interest The authors declare no confl ict of interest. © 2024 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1