OBRABOTKAMETALLOV technology Vol. 26 No. 3 2024 31. Liu J. Steel structures research update: adhesive steel-to-steel connections. Engineering Journal, 2023, vol. 60 (4). DOI: 10.62913/engj.v60i4.1314. 32. Kanaval J., Cézová E., Starý F. Screw connections with application of modern insurance sealants and adhesives analysis. Current Methods of Construction Design: Proceedings of the ICMD 2018. Cham, Springer International Publishing, 2019, pp. 295–301. DOI: 10.1007/978-3-030-33146-7_34. 33. Martínez M.A., Pantoja M., Abenojar J., Del Real J.C., Velasco F. Influence of thread geometry on the performance of retaining anaerobic adhesives. International Journal of Adhesion and Adhesives, 2011, vol. 31 (6), pp. 429–433. DOI: 10.1016/j.ijadhadh.2011.03.004. 34. Kochetkov D.V., Voyachek I.I., Zverovshchikov A.E. Razrabotka i issledovanie funktsional’nykh modelei rez’bovykh soedinenii tipa styazhki pri sborke s anaerobnymi materialami [Development and research of functional models threaded connections type gathering in assembly anaerobic materials]. Modeli, sistemy, seti v ekonomike, tekhnike, prirode i obshchestve = Models, Systems, Networks in Economics, Technology, Nature and Society, 2016, no. 4 (20), pp. 115–127. 35. Burenin V.V., Ivanina E.S., Trifonova O.I., Vorobyev D.K. Primenenie germetikov dlya uplotneniya nepodvizhnykh raz”emnykh soedinenii detalei i uzlov v stroitel’nykh i dorozhnykh mashinakh [Applying sealants to seal joints fixed detachable parts and assemblies in the construction and road machines]. Mekhanizatsiya stroitel’stva = Mechanization of construction, 2017, vol. 78 (8), pp. 35–40. 36. Neverov A.N. O mekhanizme vibratsionnogo samoraskruchivaniya rez’bovykh soedinenii [About the mechanism of vibration self-unscrewing of threaded connections]. Vestnik Moskovskogo avtomobil’no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI), 2015, no. 1 (40), pp. 46–52. 37. Kumar V.C., Hutchings I.M. Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribology International, 2004, vol. 37 (10), pp. 833–840. 38. Teidelt E., Starcevic J., Popov V.L. Influence of ultrasonic oscillation on static and sliding friction. Tribology Letters, 2012, vol. 48, pp. 51–62. DOI: 10.1007/s11249-012-9937-4. 39. Nigmetzyanov R.I., Sundukov S.K., Fatyukhin D.S. Ultrasonic assembly of press-fit joints. Russian Engineering Research, 2017, vol. 37 (12), pp. 1044–1047. DOI: 10.3103/S1068798X17120139. 40. Nigmetzyanov R.I., Kazantsev V.F., Prikhod’ko V.M., Sundukov S.K., Fatyukhin D.S. Improvement in ultrasound liquid machining by activating cavitational clusters. Russian Engineering Research, 2019, vol. 39 (8), pp. 699–702. DOI: 10.3103/S1068798X19080112. 41. Sundukov S.K. Features of the superposition of ultrasonic vibrations in the welding process. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24 (2), pp. 50–66. DOI: 10.17212/1994-6309-2022-24.2-50-66. 42. Mason T.J. Ultrasonic cleaning: An historical perspective. Ultrasonics Sonochemistry, 2016, vol. 29, pp. 519– 523. DOI: 10.1016/j.ultsonch.2015.05.004. 43. Nolting B.E., Neppiras E.A. Cavitation produced by Ultrasonics. Proceedings of the Physical Society. Section B, 1950, vol. 63 (9), p. 674. DOI: 10.1088/0370-1301/63/9/305. 44. Fatyukhin D.S., Nigmetzyanov R.I., Prikhodko V.M., Sukhov A.V., Sundukov S.K. A comparison of the effects of ultrasonic cavitation on the surfaces of 45 and 40Kh steels. Metals, 2022, vol. 12 (1), p. 138. DOI: 10.3390/ met12010138. 45. Slama R.B.H., Gilles B., Chiekh M.B., Bera J.C. Characterization of focused-ultrasound-induced acoustic streaming. Experimental Thermal and Fluid Science. 2019, vol. 101, pp. 37–47. DOI: 10.1016/j. expthermflusci.2018.10.001. 46. Kim G., Cheng S., Hong L., Kim J.-T., Li K.C., Chamorro L.P. On the acoustic fountain types and flow induced with focused ultrasound. Journal of Fluid Mechanics, 2021, vol. 909, p. R2. DOI: 10.1017/jfm.2020.1012. 47. Sajjadi B., Raman A.A.A., Ibrahim S. Influence of ultrasound power on acoustic streaming and microbubbles formations in a low frequency sono-reactor: Mathematical and 3D computational simulation. Ultrasonics Sonochemistry. 2015, vol. 24, pp. 193–203. DOI: 10.1016/j.ultsonch.2014.11.013. Conflicts of Interest The authors declare no conflict of interest. 2024 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1