OBRABOTKAMETALLOV Vol. 26 No. 3 2024 technology 32. Bott I.S., Souza L.F.G. De, Teixeira J.C.G., Rios P.R. High-strength steel development for pipelines: a Brazilian perspective. Metallurgical and Materials Transactions A, 2005, vol. 36, pp. 443–454. DOI: 10.1007/s11661005-0315-9. 33. Grimpe F., Meuser H., Gerdemann F., Muthmann E. Improvement of mechanical properties of heavy plates for high strength pipeline application i.e. in Arctic regions. 2nd International Conference on Super-High Strength Steels, 17–20 October 2010. Associazione Italiana di Metallurgia (AIM), 2010, pp. 1–13. 34. Hillenbrand H.-G., Kalwa C., Schröder J., Kassel C. Challenges to a pipe manufacturer driven by worldwide pipe projects. 18th Joint Technical Meeting on Pipeline Research, 2011, vol. 13, pp. 1–12. 35. Nonn A., Kalwa C. Modelling of damage behaviour of high strength pipeline steel. 18th European Conference on Fracture, Dresden, 2010, pp. 1–8. 36. Peiganovich N.V. Vypusk neftegazoprovodnykh trub s povyshennoi ekspluatatsionnoi nadezhnost’yu [Production of oil-and-gas pipeline tubes and casings with increased operate reliability]. Metallurg = Metallurgist, 2007, № 12, pp. 51–55. (In Russian). 37. Shabalov I.P., Morozov Yu.D., Efron L.I. Stali dlya trub i stroitel’nykh konstruktsii s povyshennymi ekspluatatsionnymi svoistvami [Steels for pipes and building structures with increased performance properties]. Moscow, Metallurgizdat Publ., 2003. 520 p. 38. Mentyukov K.Yu. Vliyanie termomekhanicheskoi obrabotki pri proizvodstve prokata i trubnogo peredela na strukturu i mekhanicheskie svoistva nizkolegirovannykh stalei dlya trub bol’shogo diametra. Diss. dokt. tekhn. nauk [The influence of thermomechanical processing in the production of rolled products and pipe processing on the structure and mechanical properties of low-alloy steels for large-diameter pipes. Dr. eng. sci. diss.]. Moscow, 2017. 122 p. 39. Patel D., Thakar V., Pandian S., Shah M., Sircar A. A review on casing while drilling technology for oil and gas production with well control model and economical analysis. Petroleum, 2019, vol. 5 (1), pp. 1–12. DOI: 10.1016/j. petlm.2018.12.003. 40. Fontenot K.R., Lesso B., Strickler R.D., Warren T. Using casing to drill directional wells. Oilfield Review, 2005, vol. 17 (2), pp. 44–61. 41. Hahn D., Van Gestel W., Fröhlich N., Stewart G. Simultaneous drill and case technology-case histories, status and options for further development. IADC/SPE Drilling Conference, New Orleans, Louisiana, February 2000. DOI: 10.2118/59126-MS. 42. Radwan A., Karimi M. Feasibility study of casing drilling application in hpht environments: A review of challenges, benefits, and limitations. SPE/IADC Middle East Drilling Technology Conference and Exhibition, Muscat, Oman, October 2011. DOI: 10.2118/148433-MS. 43. Verhoeven J.D. A review of microsegregation induced banding phenomena in steels. Journal of Materials Engineering and Performance, 2000, vol. 9 (3), pp. 286–296. DOI: 10.1361/105994900770345935. 44. MorrisonW.B. Microalloy steels – the beginning. Materials Science and Technology, 2009, vol. 25 (9), pp. 1066– 1073. DOI: 10.1179/174328409X453299. 45. Morrison W.B. Influence of small niobium additions on properties of carbon-manganese steels. Journal of the Iron and Steel Institute, 1963, vol. 201 (4), pp. 317–325. 46. Webel I., Mohrbacher H., Detemple E., Britz D., Mücklich F. Quantitative analysis of mixed niobium-titanium carbonitride solubility in HSLA steels based on atom probe tomography and electrical resistivity measurements. Journal of Materials Research and Technology, 2022, vol. 18, pp. 2048–2063. DOI: 10.1016/j.jmrt.2022.03.098. 47. Webel J., Herges A., Britz D., Detemple E., Flaxa V., Mohrbacher H., Mücklich F. Tracing microalloy precipitation in Nb-Ti HSLA steel during austenite conditioning. Metals, 2020, vol. 10, p. 243. DOI: 10.3390/met10020243. 48. Cuddy L.J. The effect of microalloy concentration on the recrystallization of austenite during hot deformation. Thermomechanical Processing of Microalloyed Austenite, Warrendale, PA, The Metallurgical Society / AIME, 1982, pp. 129–140. ISBN 0-89520-398-7. 49. DeArdo A.J., Hua M.J., Cho K.G., Garcia C.I. On strength of microalloyed steels: an interpretive review. Materials Science and Technology, 2009, vol. 25 (9), pp. 1074–1082. DOI: 10.1179/174328409X455233. 50. Vervynckt S., Verbeken K., Lopez B., Jonas J.J. Modern HSLA steels and role of non-recrystallisation temperature. International Materials Reviews, 2012, vol. 57 (4), pp. 187–207. DOI: 10.1179/1743280411y.0000000013. 51. DeArdo A.J. Niobium in modern steels. International Materials Review, 2003, vol. 48 (6), pp. 371–402. DO I: 10.1179/095066003225008833. 52. Gladman T. The physical metallurgy of microalloyed steels. Institute of Materials Publ., 1997. 363 p. 53. Xie K.Y., Zheng T., Cairney J.M., Kaul H., Williams J.G., Barbaro F., Killmore C.R., Ringer S.P. Strengthening from Nb-rich clusters in a Nb-microalloyed steel. Scripta Materialia, 2012, vol. 66 (9), pp. 710–713. DOI: 10.1016/j. scriptamat.2012.01.029.
RkJQdWJsaXNoZXIy MTk0ODM1