Thermomechanical rolling in well casing production (research review)

OBRABOTKAMETALLOV technology Vol. 26 No. 3 2024 94. Nasiri Z., Ghaemifar S., Naghizadeh M., Mirzadeh H. Thermal mechanisms of grain refinement in steels: A review. Metals and Materials International, 2021, vol. 27, pp. 2078–2094. DOI: 10.1007/s12540-020-00700-1. 95. Sakai T., Belyakov A., Kaibyshev R., Miura H., Jonas J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 2014, vol. 60, pp. 130–207. DOI: 10.1016/j.pmatsci.2013.09.002. 96. Huang K.E., Logé R.E. A review of dynamic recrystallization phenomena in metallic materials. Materials & Design, 2016, vol. 111 (8), pp. 548–574. DOI: 10.1016/j.matdes.2016.09.012. 97. Sanz L., Pereda B., López B. Effect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb. Materials Science and Engineering: A, 2017, vol. 685, pp. 377–390. DOI: 10.1016/j.msea.2017.01.014. 98. Buchmayr B. Thermomechanical Treatment of steels – A real disruptive technology since decades. Steel Research International, 2017, vol. 88 (10), p. 1700182. DOI: 10.1002/srin.201700182. 99. Funakawa Y., Shiozaki T., Tomita K., Yamamoto T., Maeda E. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ International, 2004, vol. 44 (11), pp. 1945–1951. DOI: 10.2355/isijinternational.44.1945. 100. ZaitsevA.,Arutyunyan N. Low-carbon Ti-Mo microalloyed hot rolled steels: special features of the formation of the structural state and mechanical properties. Metals, 2021, vol. 11 (10), p. 1584. DOI: 10.3390/met11101584. 101. Zhao J., Jiang Z. Thermomechanical processing of advanced high strength steels. Progress in Materials Science, 2018, vol. 94, pp. 174–242. DOI: 10.1016/j.pmatsci.2018.01.006. 102. Shaposhnikov N.G., KoldaevA.V., ZaitsevA.I., Rodionova I.G., Dyakonov D.L., Arutyunyan N.A. Features of titanium carbide precipitation in low-carbon high-strength steels microalloyed with titanium and molybdenum. Metallurgist, 2016, vol. 60 (7–8), pp. 810–816. DOI: 10.1007/s11015-016-0370-z. Translated from Metallurg, 2016, no. 8, pp. 49–54. 103. Skeeba V.Yu., Ivancivsky V.V., Martyushev N.V., Lobanov D.V., Vakhrushev N.V., ZhigulevA.K. Numerical simulation of temperature field in steel under action of electron beam heating source. Key Engineering Materials, 2016, vol. 712, pp. 105–111. DOI: 10.4028/www.scientific.net/KEM.712.105. 104. Adigamov R.R., Baraboshkin K.A., Yusupov V.S. Study of the phase transition kinetics in the experimental melting of rolled coils of K55 grade strength steel for pipes manufacturing. Steel in Translation, 2022, vol. 52 (11), pp. 1098–1105. DOI: 10.3103/S096709122211002X. 105. Adigamov R.R., Baraboshkin K.A., Mishnev P.A., Karlina A.I. Development of rolling procedures for pipes of K55 strength class at the laboratorial mill. CIS Iron and Steel Review, 2022, Vol. 24, pp. 60–66. DOI: 10.17580/ cisisr.2022.02.09. Conflicts of Interest The authors declare no conflict of interest.  2024 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1