Modeling and optimization of roller burnishing of Al6061-T6 process for minimum surface roughness, better microhardness and roundness

OBRABOTKAMETALLOV Vol. 26 No. 3 2024 65 TECHNOLOGY 5. Hamadache H., Laouar L., Zeghib N.E., Chaoui K. Characteristics of Rb40 steel superfi cial layer under the ball and roller burnishing. Journal of Materials Processing Technology, 2006, vol. 180 (1–3), pp. 130–136. DOI: 10.1016/j.jmatprotec.2006.05.013. 6. Luo H., Liu J., Wang L., Zhong Q. Investigation of the burnishing force during the burnishing process with a cylindrical surfaced tool. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, vol. 220, pp. 893–904. DOI: 10.1243/09544054B07604. 7. Ebeid S.J., Ei-Taweel T.A. Surface improvement through hybridization of electrochemical turning and roller burnishing based on the Taguchi technique. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005, vol. 219 (5), pp. 423–430. DOI: 10.1243/095440505X3228. 8. Luo H., Liu J., Wang L., Zhong Q. The eff ect of burnishing parameters on burnishing force and surface microhardness. International Journal of Advanced Manufacturing Technology, 2006, vol. 28, pp. 707–713. DOI: 10.1007/s00170-004-2412-0. 9. Okada M., Suenobu S., Watanabe K., Yamashita Y., Asakawa N. Development and burnishing characteristics of roller burnishing method with rolling and sliding eff ects. Mechatronics, 2015, vol. 29, pp. 110–118. DOI: 10.1016/j. mechatronics.2014.11.002. 10. Sundararajan P.N., Nagarajan N. Study of internal roller burnishing operation on En8 material. International Journal of Research and Innovation in Engineering Technology, 2015, vol. 1 (12), pp. 10–12. 11. Kumar N., Sachdeva A., Singh L.P., Tripathi H. Experimental investigation of the eff ect of roller burnishing process parameters on surface roughness and surface hardness of C40E steel. International Journal of Machining and Machinability of Materials, 2016, vol. 18, pp. 185–99. DOI: 10.1504/IJMMM.2016.075470. 12. Przybylski W. Integrated production technology of cylindrical surfaces by turning and burnishing. Advances in Manufacturing Science and Technology, 2016, vol. 40 (3). DOI: 10.2478/amst-2016-0014. 13. Shirsat U., Ahuja B., Dhuttargaon M. Eff ect of burnishing parameters on surface fi nish. Journal of The Institution of Engineers (India): Series C, 2017, vol. 98, pp. 431–436. DOI: 10.1007/s40032-016-0320-3. 14. Yuan X.L., Sun Y.W., Gao L.S., Jiang S.L. Eff ect of roller burnishing process parameters on the surface roughness and microhardness for TA2 alloy. International Journal of Advanced Manufacturing Technology, 2016, vol. 85, pp. 1373–1383. DOI: 10.1007/s00170-015-8031-0. 15. Bourebia M., Laouar L.H., Dominiak S. Improvement of surface fi nish by ball burnishing: approach by fractal dimension. Surface Engineering, 2017, vol. 33, pp. 255–262. DOI: 10.1080/02670844.2016.1232778. 16. Luca L., Neagu-Ventzel S., Marinescu I. Eff ects of working parameters on surface fi nish in ball-burnishing of hardened steels. Precision Engineering, 2005, vol. 29, pp. 253–256. DOI: 10.1016/j.precisioneng.2004.02.002. 17. Cobanoglu T., Ozturk S. Eff ect of burnishing parameters on the surface quality and hardness. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, vol. 229, pp. 286–294. DOI: 10.1177/0954405414527962. 18. Balland P., Tabourot L., Degre F., Moreau V. An investigation of the mechanics of roller burnishing through fi nite element simulation and experiments. International Journal of Machine Tools and Manufacture, 2013, vol. 65, pp. 29–36. DOI: 10.1016/j.ijmachtools.2012.09.002. 19. Rodríguez A., López de Lacalle L.N., Celaya A., Fernández A., Lamikiz A. Ball burnishing application for fi nishing sculptured surfaces in multi-axis machines. International Journal of Mechatronics and Manufacturing Systems, 2011, vol. 4, pp. 220–237. DOI: 10.1504/IJMMS.2011.041470. 20. Chinchanikar S., Gadge M.G. Performance modeling and multi-objective optimization during turning AISI 304 stainless steel using coated and coated-microblasted tools. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2023, vol. 25, no. 4, pp. 117–135. DOI: 10.17212/1994-63092023-25.4-117-135. (In Russian). 21. Chinchanikar S., Choudhury S.K. Eff ect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: an optimization approach. Measurement, 2013, vol. 46 (4), pp. 1572–1584. DOI: 10.1016/j.measurement.2012.11.032. 22. Gaikwad V.S., Chinchanikar S. Mechanical behaviour of friction stir weldedAA7075-T651 joints considering the eff ect of tool geometry and process parameters. Advances in Materials and Processing Technologies, 2022, vol. 8 (4), pp. 3730–3748. DOI: 10.1080/2374068X.2021.1976554. Confl icts of Interest The authors declare no confl ict of interest. © 2024 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1