OBRABOTKAMETALLOV Vol. 26 No. 3 2024 109 TECHNOLOGY 4. Ingemansson A.R. Sovremennaya nauchnaya problema povysheniya eff ektivnosti mekhanoobrabatyvayushchego proizvodstva putem vnedreniya kiberfi zicheskikh sistem v ramkakh kontseptsii «Industriya 4.0» [Current scientifi c problem of effi ciency increase in mechanical operation by cyber-physical systems introduction within “Industry 4.0” concept]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2016, no. 12, pp. 40–44. DOI: 10.12737/23487. 5. Kabaldin Y.G., Shatagin D.A., Kuzmishina A.M. Razrabotka tsifrovogo dvoinika rezhushchego instrumenta dlya mekhanoobrabatyvayushchego proizvodstva [The development of a digital twin of a cutting tool for mechanical production]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = Proceedings of Higher Educational Institutions. Маchine Building, 2019, no. 4 (709), pp. 11–17. DOI: 10.18698/0536-1044-2019-4-11-17. 6. Uhlemann T.H.J., Lehmann C., Steinhilper R. The digital twin: realizing the cyber-physical production system for Industry 4.0. Procedia CIRP, 2017, vol. 61, pp. 335–340. DOI: 10.1016/j.procir.2016.11.152. 7. Lu Y., Liu C., Wang K.I.-K., Huang H., Xu X. Digital Twin–driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 2020, vol. 61, p. 101837. DOI: 10.1016/j.rcim.2019.101837. 8. Schleich B., Anwer N., Mathieu L., Wartzack S. Shaping the digital twin for design and production engineering. CIRP Annals, 2017, vol. 66, pp. 141–144. DOI: 10.1016/j.cirp.2017.04.040. 9. Padovano A., Longo F., Nicoletti L., Mirabelli G. A Digital Twin based service oriented application for a 4.0 knowledge navigation in the smart factory. IFAC-PapersOnLine, 2018, vol. 51 (11), pp. 631–636. DOI: 10.1016/ j.ifacol.2018.08.389. 10. Tao F., Anwer N., Liu A., Wang L., Nee A.Y.C., Li L., Zhang M. Digital twin towards smart manufacturing and industry 4.0. Journal of Manufacturing Systems, 2021, vol. 58 (B), pp. 1–2. DOI: 10.1016/j.jmsy.2020.12.005. 11. Gimadeev M.R., Davydov V.M., Li A.A. Infl uence of shaping trajectory on the surface roughness in milling: vibroacoustic monitoring. Russian Engineering Research, 2023, vol. 43 (7), pp. 796–801. DOI: 10.3103/ S1068798X23070109. 12. Shevchenko D.V. Metodologiya postroeniya tsifrovykh dvoinikov na zheleznodorozhnom transporte [Methodology for constructing digital twins in railway transport]. Vestnik Nauchno-issledovatel’skogo instituta zheleznodorozhnogo transporta = Russian Railway Science Journal, 2021, vol. 80, no. 2, pp. 91–99. DOI: 10.21780/2223-9731-2021-80-2-91-99. 13. Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. UK, Cambridge University Press, 2012. 366 p. DOI: 10.1017/CBO9780511843723. 14. GOST R ISO 9000-2015. Sistema menedzhmenta kachestva. Osnovnye polozheniya i slovar’ [State Standard R ISO 9000-2015. Quality management systems. Fundamentals and vocabulary]. Moscow, Standartinform Publ., 2015. 42 p. 15. GOST R ISO 9001-2015. Sistemy menedzhmenta kachestva. Trebovaniya [State Standard R ISO 9001-2015. Quality management systems. Requirements]. Moscow, Standartinform Publ., 2015. 57 p. 16. Kuznetsova V.B., Kondusov D.V., Serdyuk A.I., Sergeev A.I. Monitoring system for high-tech equipment. Russian Engineering Research, 2017, vol. 37 (10), pp. 892–896. DOI: 10.3103/S1068798X17100136. 17. Guarin A., Gomez J., Hincapie M., Guerra D., Molina A. Product development integration using PLM tools: An industrial lathe case study. IFAC Proceedings Volumes, 2007, vol. 40 (19), pp. 135–140. DOI: 10.3182/20071002MX-4-3906.00023. 18. Ingemansson A.R., Tchigirinsky Ju.L. Razrabotka sostava tsifrovykh proizvodstvennykh sistem dlya mekhanicheskoi obrabotki [The designing of composition of digital production systems for metalworking]. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta = Izvestia of Volgograd State Technical University, 2019, no. 8 (231), pp. 21–23. (In Russian). 19. GOST R 50995.3.1–96. Tekhnologicheskoe obespechenie sozdaniya produktsii. Tekhnologicheskaya podgotovka proizvodstva [State Standard R 50995.3.1–96. Technological support for products development and production. Technological preparation of production]. Moscow, Gosstandart of Russia Publ., 1997. 20 p. 20. GOST 27.002–2015. Nadezhnost’ v tekhnike. Terminy i opredeleniya [State Standard 27.002–2015. Dependability in technics. Terms and defi nitions]. Moscow, Standartinform Publ., 2016. 28 p. 21. GOST 27.003–2016. Nadezhnost’ v tekhnike. Sostav i obshchie pravila zadaniya trebovanii po nadezhnosti [State Standard 27.003–2016. Industrial product dependability. Dependability requirements: contents and general rules for specifying]. Moscow, Standartinform Publ., 2017. 19 p. 22. Tao F., Qi Q., Liu A., Kusiak A. Data-driven smart manufacturing. Journal of Manufacturing Systems, 2018, vol. 48 (C), pp. 157–169. DOI: 10.1016/j.jmsy.2018.01.006.
RkJQdWJsaXNoZXIy MTk0ODM1