Product life cycle: machining processes monitoring and vibroacoustic signals filterings

OBRABOTKAMETALLOV Vol. 26 No. 3 2024 110 TECHNOLOGY 23. Ladj A., Wang Z., Meski O., Belkadi F., Ritou M., Da Cunha C. A knowledge-based digital shadow for machining industry in a digital twin perspective. Journal of Manufacturing Systems, 2021, vol. 58 (B), pp. 168–179. DOI: 10.1016/j.jmsy.2020.07.018. 24. Riesener M., Schuh G., Dolle C., Tonnes C. The digital shadow as enabler for data analytics in product life cycle management. Procedia CIRP, 2019, vol. 80, pp. 729–734. DOI: 10.1016/j.procir.2019.01.083. 25. Schuh G., Jussen P., Harland T. The digital shadow of services: a reference model for comprehensive data collection in MRO services of machine manufacturers. Procedia CIRP, 2018, vol. 73, pp. 271–277. DOI: 10.1016/j. procir.2018.03.318. 26. Fedonin O.N., Petreshin D.I., Karpushkin V.A. Razrabotka algoritma funktsionirovaniya avtomatizirovannoi sistemy sbora i analiza dannykh s metallorezhushchikh stankov s ChPU [Development of algorithms of the automated data collection and analysis systemwith a machine tool CNC]. Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of Bryansk State Technical University, 2014, no. 1 (41), pp. 58–62. 27. Negri E., Berardi S., Fumagalli L., Macchi M. MES-integrated digital twin frameworks. Journal of Manufacturing Systems, 2020, vol. 56, pp. 58–71. DOI: 10.1016/j.jmsy.2020.05.007. 28. Jones D., Snider C., Nassehi A., Yon J., Hicks B. Characterising the Digital Twin: a systematic literature review. CIRP Journal of Manufacturing Science and Technology, 2020, vol. 29 (A), pp. 36–52. DOI: 10.1016/j. cirpj.2020.02.002. 29. Ritto T.G., Rochinha F.A. Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mechanical Systems and Signal Processing, 2021, vol. 155, p. 107614. DOI: 10.1016/j. ymssp.2021.107614. 30. Liu C., Vengayil H., Zhong R.Y., Xu X. A systematic development method for cyber–physical machine tools. Journal of Manufacturing Systems, 2018, vol. 48 (C), pp. 13–24. DOI: 10.1016/j.jmsy.2018.02.001. 31. Cai Y., Starly B., Cohen P., Lee Y.-S. Sensor data and information fusion to construct Digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manufacturing, 2017, vol. 10, pp. 1031–1042. DOI: 10.1016/j.promfg.2017.07.094. 32. Wang J., Ye L., Gao R.X., Li C., Zhang L. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. International Journal of Production Research, 2019, vol. 57 (12), pp. 3920–3934. DOI: 10.1080/00 207543.2018.1552032. 33. Pimenov D.Yu., Kumar Gupta M., da Silva L.R.R., Kiran M., Khanna N., Krolczyk G.M. Application of measurement systems in tool condition monitoring of milling: a review of measurement science approach. Measurement, 2022, vol. 199, p. 111503. DOI: 10.1016/j.measurement.2022.111503. 34. Kozochkin M.P., Sabirov F.S., Bogan A.N., Myslivcev K.V. Monitoring sostoyaniya tekhnologicheskogo oborudovaniya na promyshlennykh predpriyatiyakh [Monitoring of process equipment for industrial enterprises]. Vestnik UGATU = Scientifi c Journal of Ufa State Aviation Technical University, 2013, vol. 17, no. 8 (61), pp. 56–62. 35. Gimadeev M.R., Li A.A. Analiz sistem avtomatizirovannogo obespecheniya parametrov sherokhovatosti poverkhnosti na osnove dinamicheskogo monitoringa [Analysis of automated surface roughness parameter support systems based on dynamic monitoring]. Advanced Engineering Research (Rostov-on-Don), 2022, vol. 22, no. 2, pp. 116–129. DOI: 10.23947/2687-1653-2022-22-2-116-129. 36. Qiao Q., Wang J., Ye L., Gao R.X. Digital twin for machining tool condition prediction. Procedia CIRP, 2019, vol. 81, pp. 1388–1393. DOI: 10.1016/j.procir.2019.04.049. 37. Qi Q., Tao F. Digital twin and big data towards smart manufacturing and Industry 4.0: 360 Degree comparison. IEEE Access, 2018, vol. 6, pp. 3585–3593. DOI: 10.1109/ACCESS.2018.2793265. 38. Cooper C., Wang P., Zhang J., Gao R.X., Roney T., Ragai I., Shaff er D. Convolutional neural networkbased tool condition monitoring in vertical milling operations using acoustic signals. Procedia Manufacturing, 2020, vol. 49, pp. 105–111. DOI: 10.1016/j.promfg.2020.07.004. 39. Averchenkov V.I., Filippova L.B., Pugach L.I. Programmnyi kompleks opredeleniya velichiny korrektsii na instrument dlya obrabatyvayushchikh tsentrov s datchikami aktivnogo kontrolya [Determination of software tool compensation values in the preparation of automated production of the use of active control sensor tool]. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = News of the Tula state university. Technical sciences, 2013, iss. 7 (1), pp. 70–78. 40. Zhou C., Guo K., Sun J., Yang B., Liu J., Song G., Sun C., Jiang Z. Tool condition monitoring in milling using a force singularity analysis approach. The International Journal of Advanced Manufacturing Technology, 2020, vol. 107, pp. 1785–1792. DOI: 10.1007/s00170-019-04664-4. 41. Cuka B., Kim D.W. Fuzzy logic based tool condition monitoring for end-milling. Robotics and ComputerIntegrated Manufacturing, 2017, vol. 47, pp. 22–36. DOI: 10.1016/j.rcim.2016.12.009.

RkJQdWJsaXNoZXIy MTk0ODM1