OBRABOTKAMETALLOV Vol. 26 No. 3 2024 111 TECHNOLOGY 42. Barreiro J., Fernandez-Abia A.I., Gonzalez-Laguna A., Pereira O. TCM system in contour milling of very thick-very large steel plates based on vibration and AE signals. Journal of Materials Processing Technology, 2017, vol. 246, pp. 144–157. DOI: 10.1016/j.jmatprotec.2017.03.016. 43. Lukyanov A.V., Aleynikov D.P. Issledovanie kolebanii sil vzai-modeistviya frezy s zagotovkoi pri povyshenii skorosti vrashcheni-ya shpindelya [Analysis of oscillations of cutting forces beftveen a mill and a work-piece when increasing the spindle rotation speed]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie = Modern Technologies. System Analysis. Modeling, 2017, vol. 56, no. 4, pp. 70–82. DOI: 10.26731/1813-9108.2017.4(56).7082. (In Russian). 44. Volosova M.A. Avtomatizirovannaya sistema monitoringa i diagnostiki obrabotki otvetstvennykh detalei v mashinostroenii keramicheskim rezhushchim instrumentom [Automated monitoring and diagnostic system for the processing of critical parts in mechanical engineering ceramic cutting tool]. Innovatsii = Innovations, 2016, no. 8 (214), pp. 84–87. (In Russian). 45. Rizal M., Ghani J.A., Nuawi M.Z., Haron C.H.C. Cutting tool wear classifi cation and detection using multisensor signals and Mahalanobis-Taguchi System. Wear, 2017, vol. 376–377 (B), pp. 1759–1765. DOI: 10.1016/j. wear.2017.02.017. 46. Hu M., Ming W., An Q., Chen M. Tool wear monitoring in milling of titanium alloy Ti-6Al-4 V under MQL conditions based on a new tool wear categorization method. The International Journal of Advanced Manufacturing Technology, 2019, vol. 104, pp. 4117–4128. DOI: 10.1007/s00170-019-04125-y. 47. Nouri M., Fussell B.K., Ziniti B.L., Linder E. Real-time tool wear monitoring in milling using a cutting condition independent method. International Journal of Machine Tools and Manufacture, 2015, vol. 89, pp. 1–13. DOI: 10.1016/j.ijmachtools.2014.10.011. 48. Shaff er D., Ragai I., Danesh-Yazdi A., Loker D. Investigation of the feasibility of using microphone arrays in monitoring machining. Manufacturing Letters, 2018, vol. 15 (B), pp. 132–134. DOI: 10.1016/j.mfglet.2017.12.008. 49. Mohamed A., Hassan M., Msaoubi R., Attia H. Tool condition monitoring for high-performance machining systems – a review. Sensors, 2022, vol. 22, p. 2206. DOI: 10.3390/s22062206. 50. Vetrichelvan G., Sundaram S., Kumaran S., Velmurugan P. An investigation of tool wear using acoustic emission and genetic algorithm. Journal of Vibration Control, 2014, vol. 21 (15), pp. 3061–3066. DOI: 10.1177/1077546314520835. 51. Sahinoglu A., Rafi ghi M. Investigation of vibration, sound intensity, machine current and surface roughness values of AISI 4140 during machining on the lathe. Arabian Journal for Science and Engineering, 2020, vol. 45, pp. 765–778. DOI: 10.1007/s13369-019-04124-x. 52. Hu S., Liu F., He Y., Hu T. An on-line approach for energy effi ciency monitoring of machine tools. Journal of Cleaner Production, 2012, vol. 27, pp. 133–140. DOI: 10.1016/j.jclepro.2012.01.013. 53. Suslov A.G., Fedorov V.P., Nagorkin M.N., Pyrikov I.L. Kompleksnyi podkhod k eksperimental’nym issledovaniyam tekhnologicheskikh sistem metalloobrabotki po obespecheniyu parametrov kachestva i ekspluatatsionnykh svoistv poverkhnostei detalei mashin [Complex approach to experimental investigations of metalworking technological systems to ensure parameters of quality and operation properties of machinery surfaces]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2018, no. 10, pp. 3–13. DOI: 10.30987/article_5bb4b1f9abbc54.46761484. 54. Alzugaray-Franz R., Diez-Cifuentes E., Leal-Munoz E., Villaverde San Jose M., Vizán A. Determination of tool wear in peripheral milling operations based on acoustic emission signals. IACME 2022: Proceedings of the XV Ibero-American Congress of Mechanical Engineering, 2023, pp. 300–305. DOI: 10.1007/978-3-031-38563-6_44. 55. Moricz L., Viharos Z.J., Nemeth A., Szepligeti A., Buki M. Off -line geometrical and microscopic & on-line vibration based cutting tool wear analysis for micro-milling of ceramics. Measurement, 2020, vol. 163, p. 108025. DOI: 10.1016/j.measurement.2020.108025. 56. Patwari A.U., Zamee A.A., Bhuiyan M.H., Sakib S.M. The surface roughness analysis using sound signal in turning of mild steel. IOP Conference Series: Materials Science and Engineering, 2019, vol. 703, p. 012011. DOI: 10.1088/1757-899X/703/1/012011. 57. GOST R 51904–2002. Programmnoe obespechenie vstroennykh sistem. Obshchie trebovaniya k razrabotke i dokumentirovaniyu [State Standard R 51904–2002. Embedded system software. General requirements for development and documentation]. Moscow, Standartinform Publ., 2012. 36 p. 58. GOST R ISO/MEK 15910–2002. Informatsionnaya tekhnologiya. Protsess sozdaniya programmnogo sredstva pol’zovatelya [State Standard R ISO/MEK 15910–2002. Information technology. Software user documentation process]. Moscow, Standartinform Publ., 2012. 98 p.
RkJQdWJsaXNoZXIy MTk0ODM1