Product life cycle: machining processes monitoring and vibroacoustic signals filterings

OBRABOTKAMETALLOV Vol. 26 No. 3 2024 technology 11. Gimadeev M.R., Davydov V.M., Li A.A. Influence of shaping trajectory on the surface roughness in milling: vibroacoustic monitoring. Russian Engineering Research, 2023, vol. 43 (7), pp. 796–801. DOI: 10.3103/ S1068798X23070109. 12. Shevchenko D.V. Metodologiya postroeniya tsifrovykh dvoinikov na zheleznodorozhnom transporte [Methodology for constructing digital twins in railway transport]. Vestnik Nauchno-issledovatel’skogo instituta zheleznodorozhnogo transporta = Russian Railway Science Journal, 2021, vol. 80, no. 2, pp. 91–99. DOI: 10.21780/2223-9731-2021-80-2-91-99. 13. Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. UK, Cambridge University Press, 2012. 366 p. DOI: 10.1017/CBO9780511843723. 14. GOST R ISO 9000-2015. Sistema menedzhmenta kachestva. Osnovnye polozheniya i slovar’ [State Standard R ISO 9000-2015. Quality management systems. Fundamentals and vocabulary]. Moscow, Standartinform Publ., 2015. 42 p. 15. GOST R ISO 9001-2015. Sistemy menedzhmenta kachestva. Trebovaniya [State Standard R ISO 9001-2015. Quality management systems. Requirements]. Moscow, Standartinform Publ., 2015. 57 p. 16. Kuznetsova V.B., Kondusov D.V., Serdyuk A.I., Sergeev A.I. Monitoring system for high-tech equipment. Russian Engineering Research, 2017, vol. 37 (10), pp. 892–896. DOI: 10.3103/S1068798X17100136. 17. Guarin A., Gomez J., Hincapie M., Guerra D., Molina A. Product development integration using PLM tools: An industrial lathe case study. IFAC Proceedings Volumes, 2007, vol. 40 (19), pp. 135–140. DOI: 10.3182/20071002MX-4-3906.00023. 18. Ingemansson A.R., Tchigirinsky Ju.L. Razrabotka sostava tsifrovykh proizvodstvennykh sistem dlya mekhanicheskoi obrabotki [The designing of composition of digital production systems for metalworking]. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta = Izvestia of Volgograd State Technical University, 2019, no. 8 (231), pp. 21–23. (In Russian). 19. GOST R 50995.3.1–96. Tekhnologicheskoe obespechenie sozdaniya produktsii. Tekhnologicheskaya podgotovka proizvodstva [State Standard R 50995.3.1–96. Technological support for products development and production. Technological preparation of production]. Moscow, Gosstandart of Russia Publ., 1997. 20 p. 20. GOST 27.002–2015. Nadezhnost’ v tekhnike. Terminy i opredeleniya [State Standard 27.002–2015. Dependability in technics. Terms and definitions]. Moscow, Standartinform Publ., 2016. 28 p. 21. GOST 27.003–2016. Nadezhnost’ v tekhnike. Sostav i obshchie pravila zadaniya trebovanii po nadezhnosti [State Standard 27.003–2016. Industrial product dependability. Dependability requirements: contents and general rules for specifying]. Moscow, Standartinform Publ., 2017. 19 p. 22. Tao F., Qi Q., Liu A., Kusiak A. Data-driven smart manufacturing. Journal of Manufacturing Systems, 2018, vol. 48 (C), pp. 157–169. DOI: 10.1016/j.jmsy.2018.01.006. 23. Ladj A., Wang Z., Meski O., Belkadi F., Ritou M., Da Cunha C. A knowledge-based digital shadow for machining industry in a digital twin perspective. Journal of Manufacturing Systems, 2021, vol. 58 (B), pp. 168–179. DOI: 10.1016/j.jmsy.2020.07.018. 24. Riesener M., Schuh G., Dolle C., Tonnes C. The digital shadow as enabler for data analytics in product life cycle management. Procedia CIRP, 2019, vol. 80, pp. 729–734. DOI: 10.1016/j.procir.2019.01.083. 25. Schuh G., Jussen P., Harland T. The digital shadow of services: a reference model for comprehensive data collection in MRO services of machine manufacturers. Procedia CIRP, 2018, vol. 73, pp. 271–277. DOI: 10.1016/j. procir.2018.03.318. 26. Fedonin O.N., Petreshin D.I., Karpushkin V.A. Razrabotka algoritma funktsionirovaniya avtomatizirovannoi sistemy sbora i analiza dannykh s metallorezhushchikh stankov s ChPU [Development of algorithms of the automated data collection and analysis systemwith a machine tool CNC]. Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of Bryansk State Technical University, 2014, no. 1 (41), pp. 58–62. 27. Negri E., Berardi S., Fumagalli L., Macchi M. MES-integrated digital twin frameworks. Journal of Manufacturing Systems, 2020, vol. 56, pp. 58–71. DOI: 10.1016/j.jmsy.2020.05.007. 28. Jones D., Snider C., Nassehi A., Yon J., Hicks B. Characterising the Digital Twin: a systematic literature review. CIRP Journal of Manufacturing Science and Technology, 2020, vol. 29 (A), pp. 36–52. DOI: 10.1016/j. cirpj.2020.02.002. 29. Ritto T.G., Rochinha F.A. Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mechanical Systems and Signal Processing, 2021, vol. 155, p. 107614. DOI: 10.1016/j. ymssp.2021.107614. 30. Liu C., Vengayil H., Zhong R.Y., Xu X. A systematic development method for cyber–physical machine tools. Journal of Manufacturing Systems, 2018, vol. 48 (C), pp. 13–24. DOI: 10.1016/j.jmsy.2018.02.001.

RkJQdWJsaXNoZXIy MTk0ODM1