OBRABOTKAMETALLOV technology Vol. 26 No. 3 2024 31. Cai Y., Starly B., Cohen P., Lee Y.-S. Sensor data and information fusion to construct Digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manufacturing, 2017, vol. 10, pp. 1031–1042. DOI: 10.1016/j.promfg.2017.07.094. 32. Wang J., Ye L., Gao R.X., Li C., Zhang L. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. International Journal of Production Research, 2019, vol. 57 (12), pp. 3920–3934. DOI: 10.1080/00 207543.2018.1552032. 33. Pimenov D.Yu., Kumar Gupta M., da Silva L.R.R., Kiran M., Khanna N., Krolczyk G.M. Application of measurement systems in tool condition monitoring of milling: a review of measurement science approach. Measurement, 2022, vol. 199, p. 111503. DOI: 10.1016/j.measurement.2022.111503. 34. Kozochkin M.P., Sabirov F.S., Bogan A.N., Myslivcev K.V. Monitoring sostoyaniya tekhnologicheskogo oborudovaniya na promyshlennykh predpriyatiyakh [Monitoring of process equipment for industrial enterprises]. Vestnik UGATU = Scientific Journal of Ufa State Aviation Technical University, 2013, vol. 17, no. 8 (61), pp. 56–62. 35. Gimadeev M.R., Li A.A. Analiz sistem avtomatizirovannogo obespecheniya parametrov sherokhovatosti poverkhnosti na osnove dinamicheskogo monitoringa [Analysis of automated surface roughness parameter support systems based on dynamic monitoring]. Advanced Engineering Research (Rostov-on-Don), 2022, vol. 22, no. 2, pp. 116–129. DOI: 10.23947/2687-1653-2022-22-2-116-129. 36. Qiao Q., Wang J., Ye L., Gao R.X. Digital twin for machining tool condition prediction. Procedia CIRP, 2019, vol. 81, pp. 1388–1393. DOI: 10.1016/j.procir.2019.04.049. 37. Qi Q., Tao F. Digital twin and big data towards smart manufacturing and Industry 4.0: 360 Degree comparison. IEEE Access, 2018, vol. 6, pp. 3585–3593. DOI: 10.1109/ACCESS.2018.2793265. 38. Cooper C., Wang P., Zhang J., Gao R.X., Roney T., Ragai I., Shaffer D. Convolutional neural networkbased tool condition monitoring in vertical milling operations using acoustic signals. Procedia Manufacturing, 2020, vol. 49, pp. 105–111. DOI: 10.1016/j.promfg.2020.07.004. 39. Averchenkov V.I., Filippova L.B., Pugach L.I. Programmnyi kompleks opredeleniya velichiny korrektsii na instrument dlya obrabatyvayushchikh tsentrov s datchikami aktivnogo kontrolya [Determination of software tool compensation values in the preparation of automated production of the use of active control sensor tool]. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = News of the Tula state university. Technical sciences, 2013, iss. 7 (1), pp. 70–78. 40. Zhou C., Guo K., Sun J., Yang B., Liu J., Song G., Sun C., Jiang Z. Tool condition monitoring in milling using a force singularity analysis approach. The International Journal of Advanced Manufacturing Technology, 2020, vol. 107, pp. 1785–1792. DOI: 10.1007/s00170-019-04664-4. 41. Cuka B., Kim D.W. Fuzzy logic based tool condition monitoring for end-milling. Robotics and ComputerIntegrated Manufacturing, 2017, vol. 47, pp. 22–36. DOI: 10.1016/j.rcim.2016.12.009. 42. Barreiro J., Fernandez-Abia A.I., Gonzalez-Laguna A., Pereira O. TCM system in contour milling of very thick-very large steel plates based on vibration and AE signals. Journal of Materials Processing Technology, 2017, vol. 246, pp. 144–157. DOI: 10.1016/j.jmatprotec.2017.03.016. 43. LukyanovA.V., Aleynikov D.P. Issledovanie kolebanii sil vzai-modeistviya frezy s zagotovkoi pri povyshenii skorosti vrashcheni-ya shpindelya [Analysis of oscillations of cutting forces beftveen a mill and a work-piece when increasing the spindle rotation speed]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie = Modern Technologies. System Analysis. Modeling, 2017, vol. 56, no. 4, pp. 70–82. DOI: 10.26731/1813-9108.2017.4(56).7082. (In Russian). 44. Volosova M.A. Avtomatizirovannaya sistema monitoringa i diagnostiki obrabotki otvetstvennykh detalei v mashinostroenii keramicheskim rezhushchim instrumentom [Automated monitoring and diagnostic system for the processing of critical parts in mechanical engineering ceramic cutting tool]. Innovatsii = Innovations, 2016, no. 8 (214), pp. 84–87. (In Russian). 45. Rizal M., Ghani J.A., Nuawi M.Z., Haron C.H.C. Cutting tool wear classification and detection using multisensor signals and Mahalanobis-Taguchi System. Wear, 2017, vol. 376–377 (B), pp. 1759–1765. DOI: 10.1016/j. wear.2017.02.017. 46. Hu M., Ming W., An Q., Chen M. Tool wear monitoring in milling of titanium alloy Ti-6Al-4 V under MQL conditions based on a new tool wear categorization method. The International Journal of Advanced Manufacturing Technology, 2019, vol. 104, pp. 4117–4128. DOI: 10.1007/s00170-019-04125-y. 47. Nouri M., Fussell B.K., Ziniti B.L., Linder E. Real-time tool wear monitoring in milling using a cutting condition independent method. International Journal of Machine Tools and Manufacture, 2015, vol. 89, pp. 1–13. DOI: 10.1016/j.ijmachtools.2014.10.011. 48. Shaffer D., Ragai I., Danesh-Yazdi A., Loker D. Investigation of the feasibility of using microphone arrays in monitoring machining. Manufacturing Letters, 2018, vol. 15 (B), pp. 132–134. DOI: 10.1016/j.mfglet.2017.12.008.
RkJQdWJsaXNoZXIy MTk0ODM1