Information properties of frequency characteristics of dynamic cutting systems in the diagnosis of tool wear

OBRABOTKAMETALLOV Vol. 26 No. 3 2024 129 EQUIPMENT. INSTRUMENTS of Vibroengineering. – 2021. – Vol. 23 (6). – P. 1418– 1432. – DOI: 10.21595/jve.2021.22033. 22. Козочкин М.П. Влияние динамических характеристик станочных узлов на вибрации при резании // СТИН. – 2014. – № 2. – С. 4–9. 23. Диагностика и сертификация металлорежущего оборудования / М.П. Козочкин, А.Р. Маслов, Ф.С. Сабиров, А.Н. Порватов. – М.: Инновационное машиностроение, 2017. – 240 с. 24. Zakovorotnyi V.L., Gvindjiliya V.E. Infl uence of speeds of forming movements on the properties of geometric topology of the part in longitudinal turning // Journal of Manufacturing Processes. – 2024. – Vol. 112. – P. 202–213. – DOI: 10.1016/j.jmapro.2024.01.037. 25. Zakovorotnyi V.L., Gvindjiliya V.E. Evolution of the dynamic cutting system with irreversible energy transformation in the machining zone // Russian Engineering Research. – 2019. – Vol. 39 (5). – P. 423–430. – DOI: 10.3103/S1068798X19050204. 26. Precision manufacturing process monitoring with acoustic emission / D.E. Lee, I. Hwang, C.M.O. Valente, J.F.G. Oliveira, D.A. Dornfeld // International Journal of Machine Tools and Manufacture. – 2006. – Vol. 46 (2), – P. 176–188. – DOI: 10.1016/j.ijmachtools.2005.04.001. 27. Digital twin-based anomaly detection for realtime tool condition monitoring in machining / Z. Liu, Z.-Q. Lang, Y. Gui, Y.-P. Zhu, H. Laalej // Journal of Manufacturing Systems. – 1995. – Vol. 75. – P. 163– 173. – DOI: 10.1016/j.jmsy.2024.06.004. 28. Dimla D.E. Sensor signals for tool-wear monitoring in metal cutting operations – a review of methods // International Journal of Machine Tools and Manufacture. – 2000. – Vol. 40 (8). – P. 1073–1098. – DOI: 10.1016/S0890-6955(99)00122-4. 29. Choi Y., Narayanaswami R., Chandra A. Tool wear monitoring in ramp cuts in end milling using the wavelet transform // International Journal of Advanced Manufacturing Technology. – 2004. – Vol. 23 (5-6). – P. 419–428. – DOI: 10.1007/s00170-003-1898-1. 30. Григорьев А.С., Инструментарий системы ЧПУ для диагностики и прогнозирования износа режущего инструмента в реальном времени при токарной обработке // Вестник МГТУ «Станкин». – 2012. – № 1 (18). – С. 39–43. 31. Заковоротный В.Л., Бордачев Е.В. Информационное обеспечение системы динамической диагностики износа режущего инструмента на примере токарной обработки // Проблемы машиностроения и надежности машин. – 1995. – № 3. – С. 95–103. 32. Dolinšek S., Kopac J. Acoustic emission signals for tool wear identifi cation // Wear. – 1999. – Vol. 225. – P. 295–303. 33. Chiou R.Y., Liang S.Y. Analysis of acoustic emission in chatter vibration with tool wear eff ect in turning // International Journal of Machine Tools and Manufacture. – 2000. – Vol. 40 (7). – P. 927–941. – DOI: 10.1016/ S0890-6955(99)00093-0. 34. Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring / M.S.H. Bhuiyan, I.A. Choudhury, M. Dahari, Y. Nukman, S.Z. Dawal // Measurement. – 2016. – Vol. 92. – P. 208–217. – DOI: 10.1016/j.measurement.2016.06.006. 35. Development of a tool wear-monitoring system for hard turning / C. Scheff er, H. Kratz, P. Heyns, F. Klocke // International Journal of Machine Tools and Manufacture. – 2003. – Vol. 43 (10). – P. 973–985. – DOI: 10.1016/S0890-6955(03)00110-X. 36. Siddhpura A., Paurobally R. A review of fl ank wear prediction methods for tool condition monitoring in a turning process // International Journal of Advanced Manufacturing Technology. – 2013. – Vol. 65. – P. 371– 393. – DOI: 10.1007/s00170-012-4177-1. 37. Tool wear monitoring using naive Bayes classifi - ers / J. Karandikar, T. McLeay, S. Turner, T. Schmitz // International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 77. – P. 1613–1626. – DOI: 10.1007/ s00170-014-6560-6. 38. Azmi A. Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites // Advances in Engineering Software. – 2015. – Vol. 82. – P. 53–64. – DOI: 10.1016/j.advengsoft.2014.12.010. 39. Kene A.P., Choudhury S.K. Analytical modeling of tool health monitoring system using multiple sensor data fusion approach in hard machining // Measurement. – 2019. – Vol. 145. – P. 118–129. – DOI: 10.1016/j. measurement.2019.05.062. 40. Chethan Y., Ravindra H., Krishnegowda Y. Optimization of machining parameters in turning Nimonic-75 using machine vision and acoustic emission signals by Taguchi technique // Measurement. – 2019. – Vol. 144. – P. 144–154. – DOI: 10.1016/j. measurement.2019.05.035. 41. Aslan A. Optimization and analysis of process parameters for fl ank wear, cutting forces and vibration in turning of AISI 5140: A comprehensive study // Measurement. – 2020. – Vol. 163. – DOI: 10.1016/j. measurement.2020.107959. 42. Tool condition monitoring techniques in milling process – a review / T.Mohanraj, S. Shankar, R. Rajasekar, N. Sakthivel,A. Pramanik // Journal ofMaterialsResearch and Technology. – 2019. – Vol. 9 (1). – P. 1032–1042. – DOI: 10.1016/j.jmrt.2019.10.031. 43. Kalvoda T., Hwang Y.R. A cutter tool monitoring in machining process using Hilbert–Huang transform // International Journal of Machine Tool and Manufacture. – 2010. – Vol. 50 (5). – P. 495–501. – DOI: 10.1016/j.ijmachtools.2010.01.006.

RkJQdWJsaXNoZXIy MTk0ODM1