OBRABOTKAMETALLOV Vol. 26 No. 3 2024 145 EQUIPMENT. INSTRUMENTS 12. Thakur A., Pabla B.S. Surface modifi cation using composite electrodes in EDM: a review // International Journal for Research inApplied Science and Engineering Technology. – 2023. – Vol. 11 (10). – P. 1008–1013. – DOI: 10.22214/ijraset.2023.56134. 13. Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering / F.L. Amorim, T. Czelusniak, C.F. Higa, A. Lohrengel // The International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 72. – P. 9–12. – DOI: 10.1007/s00170-014-5765-z. 14. Performance of sinking EDM electrodes made by selective laser sintering technique / F.L. Amorim, A. Lohrengel, N. Muller, G. Schafer, T. Czelusniak // The International Journal of Advanced Manufacturing Technology. – 2012. – Vol. 65. – P. 9–12. – DOI: 10.1007/ s00170-012-4267-0. 15. Prospects for laser based powder bed fusion in the manufacturing of metal electrodes: a review / P. Nyamekye, P. Nieminen, M.R. Bilesan, E. Repo, H. Piili,A. Salminen //AppliedMaterials Today. – 2021. – Vol. 23. – P. 1–20. – DOI: 10.1016/j.apmt.2021.101040. 16. Residual porosity of 3D-LAM-printed stainless steel electrodes allows galvanic exchange platinisation / J. Weber, A.J. Wain, H. Piili, A. Vuorema // ChemElectroChem. – 2016. – Vol. 3 (6). – P. 1–24. – DOI: 10.1002/celc.201600098. 17. Sahu A.K., Mahapatra S.S. Performance analysis of tool electrode prepared through laser sintering process during electrical discharge machining of titanium // The International Journal of Advanced Manufacturing Technology. – 2020. – Vol. 106 (6). – P. 1017–1041. – DOI: 10.1007/s00170-019-04675-1. 18. Experimental research on preparation and machining performance of porous electrode in electrical discharge machining / Y. Jiang, L. Kong, J. Yu, C. Hua // Journal of Mechanical Science and Technology. – 2022. – Vol. 36 (1–3). – P. 1–15. – DOI: 10.1007/s12206-0221134-2. 19. Zhang B., Li Y., Bai Q. Defect formation mechanisms in selective laser melting: a review // Chinese Journal of Mechanical Engineering. – 2017. – Vol. 30 (3). – P. 515–527. – DOI: 10.1007/s10033-0170121-5. 20. Defect, microstructure, and mechanical property of Ti-6Al-4V alloy fabricated by high-power selective laser melting / S. Cao, Z. Chen, K. Yang, S.C.V. Lim // JOM: The Journal of the Minerals, Metals & Materials Society. – 2017. – Vol. 69 (12). – P. 2684–2692. – DOI: 10.1007/s11837-017-2581-6. 21. Balling behavior of stainless steel and nickel powder during selective laser melting process / R. Li, J. Liu, Y. Shi, L. Wang // The International Journal of Advanced Manufacturing Technology. – 2012. – Vol. 59 (9). – P. 1025–1035. – DOI: 10.1007/s00170011-3566-1. 22. Promoppatum P., Yao S.C. Analytical evaluation of defect generation for selective laser melting of metals // The International Journal of Advanced Manufacturing Technology. – 2019. – Vol. 103. – P. 1–4. – DOI: 10.1007/ s00170-019-03500-z. 23. Study of the EDM process of bimetallic materials using a composite electrode tool / T.R. Ablyaz, E.S. Shlykov, K.R. Muratov, A.V. Zhurin // Materials. – 2022. – Vol. 15 (3). – P. 1–13. – DOI: 10.3390/ ma15030750. 24. Ablyaz T.R., Shlykov E.S., Muratov K.R. Improving the effi ciency of electrical discharge machining of special-purpose products with composite electrode tools // Materials. – 2021. – Vol. 14 (20). – P. 1–19. – DOI: 10.3390/ma14206105. Конфликт интересов Авторы заявляют об отсутствии конфликта интересов. © 2024 Авторы. Издательство Новосибирского государственного технического университета. Эта статья доступна по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (https://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1