Patterns of reverse-polarity plasma torches wear during cutting of thick rolled sheets

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 6 4 its outlet leads to a faster failure of both the nozzle itself and the working electrode due to uneven wear. In addition, increased wear of the working elements of the plasma torch can ensure untimely starting arcing off when switching to the operating mode. In normal operation, the wear of the working elements of the plasma torch developed during the implementation of the joint project of ITS Siberia and ISPMS SB RAS when cutting aluminum and titanium alloy sheets up to 100 mm thick with a reverse polarity current, although quite intense in comparison with cutting sheet metal of smaller thicknesses, currently allows for more than 250–300 starts with different cutting lengths. References 1. Wen J., He L., Zhou T., Tian P., Zhou T., Feng Z. Modeling of the polycrystalline cutting of austenitic stainless steel based on dislocation density theory and study of burr formation mechanism. Journal of Mechanical Science and Technology, 2023, vol. 37 (6), pp. 2855–2870. DOI: 10.1007/s12206-023-0512-8. 2. Akkurt A. The effect of cutting process on surface microstructure and hardness of pure and Al 6061 aluminium alloy. Engineering Science and Technology, an International Journal, 2015, vol. 18 (3), pp. 303–308. DOI: 10.1016/j. jestch.2014.07.004. 3. Levichev N., Tomás García A., Dewil R., Duflou J.R. A virtual sensing approach for quality and productivity optimization in laser flame cutting. The International Journal of Advanced Manufacturing Technology, 2022, vol. 121, pp. 6799–6810. DOI: 10.1007/s00170-022-09750-8. 4. He G.-J., Gu L., Zhu Y.-M., Chen J.-P., Zhao W.-S., Rajurkar K.P. Electrical arc contour cutting based on a compound arc breaking mechanism. Advances in Manufacturing, 2022, vol. 10 (4), pp. 583–595. DOI: 10.1007/ s40436-022-00406-0. 5. Wei J., He W., Lin C., Zhang J., Chen J., Xiao J., Xu J. Optimizing process parameters of in-situ laser assisted cutting of glass–ceramic by applying hybrid machine learning models. Advanced Engineering Informatics, 2024, vol. 62, p. 102590. DOI: 10.1016/j.aei.2024.102590. 6. Shulyat’ev V.B., Gulov M.A., Karpov E.V., Malikov A.G., Boiko K.R. Laser cutting of aluminum alloys using pulsed radiation from a CO2 laser under conditions of an optical discharge in an argon jet. Bulletin of the Lebedev Physics Institute, 2023, vol. 50 (suppl. 10), pp. S1075–S1078. DOI: 10.3103/S1068335623220116. 7. Barsukov G.V., Selemenev M.F., Zhuravleva T.A., Kravchenko I.N., Selemeneva E.M., Barmina O.V. Influence of the parameters of chemical thermal treatment of copper slag particles on the quality of hydroabrasive cutting. Journal of Machinery Manufacture and Reliability, 2023, vol. 52 (7), pp. 679–686. DOI: 10.1134/S1052618823070075. 8. Boulos M.I., Fauchais P., Pfender E. Plasma torches for cutting, welding and PTA coating. Handbook of Thermal Plasmas. Cham, Springer, 2023. DOI: 10.1007/978-3-319-12183-3_47-2. 9. Sharma D.N., Kumar J.R. Optimization of dross formation rate in plasma arc cutting process by response surface method. Materials Today: Proceedings, 2020, vol. 32, pp. 354–357. DOI: 10.1016/j.matpr.2020.01.605. 10. Shchitsyn V.Yu., Yazovskikh V.M. Effect of polarity on the heat input into the nozzle of a plasma torch. Welding International, 2002, vol. 16 (6), pp. 485–487. DOI: 10.1080/09507110209549563. 11. Ilii S.M., Coteata M. Plasma arc cutting cost. International Journal of Material Forming, 2009, vol. 2 (suppl. 1), pp. 689–692. DOI: 10.1007/s12289-009-0588-4. 12. Gostimirović M., Rodic D., Sekulić M., Aleksic A. An experimental analysis of cutting quality in plasma arc machining. Advanced Technologies & Materials, 2020, vol. 45 (1), pp. 1–8. DOI: 10.24867/ATM-2020-1-001. 13. Grinenko A.V., Knyazhev E.O., Chumaevskii A.V., Nikolaeva A.V., Panfilov A.O., Cheremnov A.M., Zhukov L.L., Gusarova A.V., Sokolov P.S., Gurianov D.A., Rubtsov V.E., Kolubaev E.A. Structural features and morphology of surface layers of AA2024 and AA5056 aluminum alloys during plasma cutting. Russian Physics Journal, 2023, vol. 66, pp. 925–933. DOI: 10.1007/s11182-023-03025-9. 14. Chumaevskii A.V., Nikolaeva A.V., Grinenko A.V., Panfilov A.O., Knyazhev E.O., Cheremnov A.M., Utyaganova V.R., Beloborodov V.A., Sokolov P.S., Gurianov D.A., Kolubaev E.A. Structure formation in surface layers of aluminum and titanium alloys during plasma cutting. Physical Mesomechanics, 2023, vol. 26, pp. 711–721. DOI: 10.1134/S1029959923060103. 15. Rubtsov V.E., Panfilov A.O., Knyazhev E.O., Nikolaeva A.V., Cheremnov A.M., Gusarova A.V., Beloborodov V.A., Chumaevskii A.V., Ivanov A.N. Development of plasma cutting technique for C1220 copper, AA2024 aluminum alloy, and Ti-1,5Al-1,0Mn titanium alloy using a plasma torch with reverse polarity. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 4, pp. 33–52. DOI: 10.17212/1994-6309-2022-24.4-33-52.

RkJQdWJsaXNoZXIy MTk0ODM1