Methods of synchrotron radiation monochromatization (research review)

OBRABOTKAMETALLOV Vol. 26 No. 3 2024 233 MATERIAL SCIENCE 46. Wysokinski T.W., Renier M., Suortti P., Belev G., Ruosset L., Adam M., Miller D., Huber N., Chapman L.D. High-power-load DCLM monochromator for a computed tomography program at BMIT at energies of 25–150 keV. Journal of Synchrotron Radiation, 2018, vol. 25 (5), pp. 1548–1555. DOI: 10.1107/S1600577518008639. 47. Yamaoka H., Hiraoka N., Ito M., Mizumaki M., Sakurai Y., Kakutani Y., Koizumi A., Sakai N., Higashi Y. Performance of bent-crystal monochromators for high-energy synchrotron radiation. Journal of Synchrotron Radiation, 1999, vol. 7 (2), pp. 69–77. DOI: 10.1107/S090904959901691X. 48. WangY., Narayanan S., Liu J., Shu D., MashayekhiA., Qian J., Wang J.Asagittally focusing double-multilayer monochromator for ultrafast X-ray imaging applications. Journal of Synchrotron Radiation, 2006, vol. 14 (1), pp. 138–143. DOI: 10.1107/S0909049506050205. 49. Zhong Z., Hasnah M., Broadbent A., Dooryhee E., Lucas M. Phase-space matching between bent Laue and fl at Bragg crystals. Journal of Synchrotron Radiation, 2019, vol. 26 (6), pp. 1917–1923. DOI: 10.1107/ S1600577519010774. 50. Bilderback D.H. The potential of cryogenic silicon and germanium X-ray monochromators for use with large synchrotron heat loads. Nuclear Instruments in Physics Research, 1986, vol. 246 (1–3), pp. 434–436. DOI: 10.1016/0168-9002(86)90126-9. 51. Shvyd’ko Y.V. High-refl ectivity high-resolution X-ray crystal optics with diamonds. Nature Physics, 2010, vol. 6 (3), pp. 196–200. 52. Knapp G.S., Rogers C.S., Beno M.A., Wiley C.L., Jennings G., Cowan P.L. Cryogenic monochromator as a solution to undulator heat loads at third generation synchrotron sources. Review of Scientifi c Instruments, 1995, vol. 66 (2), pp. 2138–2140. DOI: 10.1063/1.1145752. 53. Lee W., Fernandez P., Mills M. Performance limits of direct cryogenically cooled silicon monochromators – experimental results at the APS. Journal of Synchrotron Radiation, 1999, vol. 7 (1), pp. 12–17. DOI: 10.1107/ S0909049599014478. 54. Khosroabadi H.,Alianelli L., Porter D.G., Collins S., SawhneyK. Cryo-cooled silicon crystal monochromators: a study of power load, temperature and deformation. Journal of Synchrotron Radiation, 2022, vol. 29 (2), pp. 377– 385. DOI: 10.1107/S160057752200039X. 55. Proux O., Nassif V., Prat A., Ulrich O., Lahera E., Biquard X., Menthonnex J., Hazemann J. Feedback system of a liquid-nitrogen-cooled double-crystal monochromator: design and performances. Journal of Synchrotron Radiation, 2005, vol. 13 (1), pp. 59–68. DOI: 10.1107/S0909049505037441. 56. Bai Y., Gong X., Lu Q., Song Y., Zhu W., Xue S., Wang D., Peng Z., Zhang Z. Adaptive vibration control method for double-crystal monochromator base on VMD and FxNLMS. Journal of Synchrotron Radiation, 2023, vol. 30 (2), pp. 308–318. DOI: 10.1107/S1600577523000528. 57. Chumakov A.I., Sergeev I., Celse J., Ruff er R., Lesourd M., Zhang L., del Rio M.S. Performance of a silicon monochromator under high heat load. Journal of Synchrotron Radiation, 2014, vol. 21 (2), pp. 315–324. DOI: 10.1107/S1600577513033158. 58. Dolbnya I.P., Sawhney K.J.S., Scott S.M., Dent A.J., Cibin G., Preece G.M., Pedersen U.K., Kelly J., Murray P. A water-cooled monochromator for the B16 Test beamline at the Diamond Light source: capabilities and performance characterization. Journal of Synchrotron Radiation, 2018, vol. 26 (1), pp. 253–262. DOI: 10.1107/ S1600577518014662. 59. Geraldes R.R., Witvoet G., Vermeulen J.P.M.B. The mechatronic architecture and design of the HighDynamic Double-Crystal Monochromator for Sirius light source. Precision Engineering, 2022, vol. 77 (5), pp. 110– 126. DOI: 10.1016/j.precisioneng.2022.05.009. 60. ChumakovA.I., Shvyd’koY., Sergueev I., Bessas D., Ruff er R. Hard-X-ray spectroscopy with a spectrographic approach. Physical Review Letters, 2019, vol. 123 (9). DOI: 10.1103/PhysRevLett.123.097402. 61. Yabashi M., Tamasaku K., Ishikawa T. Characterization of the transverse coherence of hard synchrotron radiation by intensity interferometry. Physical ReviewLetters, 2001, vol. 87 (14). DOI: 10.1103/physrevlett.87.140801. Confl icts of Interest The authors declare no confl ict of interest. © 2024 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1