OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 3 2024 Russia. At the end of 2024, a specialized synchrotron radiation source of generation 4+ “SKIF” is to be put into pilot operation in Novosibirsk (Koltsovo). The design of synchrotron radiation sources implies the presence of a storage ring of elementary particles (usually electrons) and beamlines, which equipment is used to study materials. The total number of planned beamlines at the SKIF source alone is thirty. Monochromators are one of the types of equipment included in the beamlines. The purpose of these optical and mechanical devices is related to the separation of diffracted beams characterized by narrow wavelength bands from a wide spectrum of electromagnetic radiation. Including Russia in the number of countries focused on creating modern sources of synchrotron radiation means that there is a need to develop its own various types of monochromators. Russian specialists will have to solve this problem in the coming years. References 1. Caciuffo R., Melone S., Rustichelli F., Boeuf A. Monochromators for x-ray synchrotron radiation. Physics Reports, 1987, vol. 152 (1), pp. 1–71. DOI: 10.1016/0370-1573(87)90080-9. 2. Adronova N.V., Kohn V.G., ChechinA.I. Multilayer mirrors as synchrotron radiation monochromators. Nuclear Instruments in Physics Research, 1986, vol. 359 (1–2), pp. 131–134. DOI: 10.1016/0168-9002(94)01681-x. 3. Willmott P. An introduction to synchrotron radiation: techniques and applications. Hoboken, John Wiley & Sons, 2019. 503 p. ISBN 9781119280392. 4. Hoffman A. The physics of synchrotron radiation. New York, Cambridge University Press, 2003. 362 p. 5. Bilderback D.H., Freund A.K., Knapp G.S., Mills D.M. The historical development of cryogenically cooled monochromators for third-generation synchrotron radiation sources. Journal of Synchrotron Radiation, 2000, vol. 7 (2), pp. 53–60. DOI: 10.1107/S0909049500000650. 6. Darwin C.G. The reflexion of x-rays from imperfect crystals. Journal of Science, 1922, vol. 43 (257), pp. 800– 829. DOI: 10.1080/14786442208633940. 7. Adronova N.V., Kohn V.G., ChechinA.I. Multilayer mirrors as synchrotron radiation monochromators. Nuclear Instruments in Physics Research, 1986, vol. 359 (1–2), pp. 131–134. DOI: 10.1016/0168-9002(94)01681-x. 8. Zhang F., Allen A.J., Levine L.E., Long G.G., Kuzmenko I., Ilavsky J. High-efficiency coherence-preserving harmonic rejection with crystal optics. Journal of Synchrotron Radiation, 2018, vol. 25 (5), pp. 1354–1361. DOI: 10.1107/S1600577518009645. 9. Hart M., Berman L. X-ray optics for synchrotron radiation; Perfect crystals, mirrors and multilayers. Acta Crystallographica. Section A, 1998, vol. 54 (6), pp. 850–858. DOI: 10.1107/S0108767398011283. 10. Chkhalo N.I., Garakhin S.A., Malyshev I.V., Polkovnikov V.N., Toropov M.N., Salashchenko N.N., Ulasevich B.A., Rakshun Ya.V., Chernov V.A., Dolbnya I.P., Raschenko S.V. Project of a two-mirror monochromator for the photon energy range 8–36 keV for the “SKIF” synchrotron. Technical Physics, 2022, vol. 67 (8), pp. 1075– 1080. DOI: 10.21883/TP.2022.08.54576.100-22. Translated from Zhurnal tekhnicheskoi fiziki, 2022, vol. 92 (8), pp. 1261–1266. DOI: 10.21883/JTF.2022.08.52794.100-22. 11. Shaposhnikov R.A., Zuev S.Yu., Polkovnikov V.N., Salashchenko N.N., Chkhalo N.I. Ru/Sr multilayer mirrors for the spectral range 9–12 nm. Technical Physics, 2022, vol. 67 (8), pp. 996–1001. DOI: 10.21883/ TP.2022.08.54562.124-22. Translated from Zhurnal tekhnicheskoi fiziki, 2022, vol. 92 (8), pp. 1179–1184. DOI: 10.21883/JTF.2022.08.52780.124-22. 12. Bigault T., Ziegler E.,Morawe C., Hustache R.,Massonnat J.Y., RostaingG. Doublemultilayermonochromator to tailor bending magnet radiation spectrum. Proceedings of SPIE, 2003, vol. 5195 (1). Crystals, Multilayers, and Other Synchrotron optics, pp. 12–20. DOI: 10.1117/12.515980. 13. Flannery B.P., Deckman H.W., Roberge W.G., D’Amico K.L. Three-dimensional X-ray microtomography. Science, 1987, vol. 237 (4821), pp. 1439–1444. DOI: 10.1126/science.237.4821.1439. 14. Rack A., Weitkamp T., Riotte M., Grigoriev D., Rack T., Helfen L., Baumbach T., Dietsch R., Holz T., Kramer M., Siewert F., Meduna M., Cloetens P., Ziegler E. Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging. Journal of Synchrotron Radiation, 2010, vol. 17 (4), pp. 496– 510. DOI: 10.1107/S0909049510011623. 15. Ziegler E., Hignette O., Morawe Ch., Tucoulou R. High-efficiency tunable X-ray focusing optics using mirrors and laterally-grated multilayers. Nuclear Instruments & Methods in Physics Research, 2001, vol. 467–468 (2), pp. 954–957. DOI: 10.1016/S0168-9002(01)00533-2.
RkJQdWJsaXNoZXIy MTk0ODM1