Methods of synchrotron radiation monochromatization (research review)

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 3 2024 Dynamic Double-Crystal Monochromator at Sirius/LNLS. Journal of Synchrotron Radiation, 2022, vol. 30 (1), pp. 90–110. DOI: 10.1107/S1600577522010724. 39. Golovchenko J.A., Levesque R.A., Cowan P.L. X‐ray monochromator system for use with synchrotron radiation sources. Review of Scientific Instruments, 1981, vol. 52 (4), pp. 509–516. DOI: 10.1063/1.1136631. 40. Baronova E.O., Stepanenko M.M., Pereira N.R. Cauchois–Johansson X-ray spectrograph for 1.5–400 keV energy range. Review of Scientific Instruments, 2001, vol. 72 (2), pp. 1416–1420. DOI: 10.1063/1.1324754. 41. Johann H.H. Die Erzeugung lichtstarker Rontgenspektren mit Hilfe von Konkavkristallen. Physik, 1931, vol. 69 (3–4), pp. 185–206. DOI: 10.1007/bf01798121. 42. Johansson T. Uber ein neuartiges, genau fokussierendes Rongenspektrometer. Physik, 1933, vol. 82 (7–8), pp. 507–528. DOI: 10.1007/bf01342254. 43. Martinson M., Samadi N., Belev G., Bassey B., Lewis R.,Aulakh G., Chapman D. Development of a bent Laue beam-expanding double-crystal monochromator for biomedical X-ray imaging. Journal of Synchrotron Radiation, 2014, vol. 21 (3), pp. 479–483. DOI: 10.1107/S1600577514003014. 44. Zhong Z., Kao C.C., Siddons D.P., Hastings J.B. Sagittal focusing of high-energy synchrotron X-rays with asymmetric Laue crystals. I. Theoretical considerations. Journal of Applied Crystallography, 2001, vol. 34 (4), pp. 504–509. DOI: 10.1107/S0021889801006409. 45. Guigay J., del Rio M.S. X-ray focusing by bent crystals: focal positions as predicted by the crystal lens equation and the dynamical diffraction theory. Journal of Synchrotron Radiation, 2021, vol. 29 (1), pp. 148–158. DOI: 10.1107/S1600577521012480. 46. Wysokinski T.W., Renier M., Suortti P., Belev G., Ruosset L., Adam M., Miller D., Huber N., Chapman L.D. High-power-load DCLM monochromator for a computed tomography program at BMIT at energies of 25–150 keV. Journal of Synchrotron Radiation, 2018, vol. 25 (5), pp. 1548–1555. DOI: 10.1107/S1600577518008639. 47. Yamaoka H., Hiraoka N., Ito M., Mizumaki M., Sakurai Y., Kakutani Y., Koizumi A., Sakai N., Higashi Y. Performance of bent-crystal monochromators for high-energy synchrotron radiation. Journal of Synchrotron Radiation, 1999, vol. 7 (2), pp. 69–77. DOI: 10.1107/S090904959901691X. 48. WangY., Narayanan S., Liu J., Shu D., MashayekhiA., Qian J., Wang J.Asagittally focusing double-multilayer monochromator for ultrafast X-ray imaging applications. Journal of Synchrotron Radiation, 2006, vol. 14 (1), pp. 138–143. DOI: 10.1107/S0909049506050205. 49. Zhong Z., Hasnah M., Broadbent A., Dooryhee E., Lucas M. Phase-space matching between bent Laue and flat Bragg crystals. Journal of Synchrotron Radiation, 2019, vol. 26 (6), pp. 1917–1923. DOI: 10.1107/ S1600577519010774. 50. Bilderback D.H. The potential of cryogenic silicon and germanium X-ray monochromators for use with large synchrotron heat loads. Nuclear Instruments in Physics Research, 1986, vol. 246 (1–3), pp. 434–436. DOI: 10.1016/0168-9002(86)90126-9. 51. Shvyd’ko Y.V. High-reflectivity high-resolution X-ray crystal optics with diamonds. Nature Physics, 2010, vol. 6 (3), pp. 196–200. 52. Knapp G.S., Rogers C.S., Beno M.A., Wiley C.L., Jennings G., Cowan P.L. Cryogenic monochromator as a solution to undulator heat loads at third generation synchrotron sources. Review of Scientific Instruments, 1995, vol. 66 (2), pp. 2138–2140. DOI: 10.1063/1.1145752. 53. Lee W., Fernandez P., Mills M. Performance limits of direct cryogenically cooled silicon monochromators – experimental results at the APS. Journal of Synchrotron Radiation, 1999, vol. 7 (1), pp. 12–17. DOI: 10.1107/ S0909049599014478. 54. Khosroabadi H.,Alianelli L., Porter D.G., Collins S., SawhneyK. Cryo-cooled silicon crystal monochromators: a study of power load, temperature and deformation. Journal of Synchrotron Radiation, 2022, vol. 29 (2), pp. 377– 385. DOI: 10.1107/S160057752200039X. 55. Proux O., Nassif V., Prat A., Ulrich O., Lahera E., Biquard X., Menthonnex J., Hazemann J. Feedback system of a liquid-nitrogen-cooled double-crystal monochromator: design and performances. Journal of Synchrotron Radiation, 2005, vol. 13 (1), pp. 59–68. DOI: 10.1107/S0909049505037441. 56. Bai Y., Gong X., Lu Q., Song Y., Zhu W., Xue S., Wang D., Peng Z., Zhang Z. Adaptive vibration control method for double-crystal monochromator base on VMD and FxNLMS. Journal of Synchrotron Radiation, 2023, vol. 30 (2), pp. 308–318. DOI: 10.1107/S1600577523000528. 57. Chumakov A.I., Sergeev I., Celse J., Ruffer R., Lesourd M., Zhang L., del Rio M.S. Performance of a silicon monochromator under high heat load. Journal of Synchrotron Radiation, 2014, vol. 21 (2), pp. 315–324. DOI: 10.1107/S1600577513033158.

RkJQdWJsaXNoZXIy MTk0ODM1