Wear resistance and corrosion behavior of Cu-Ti coatings in SBF solution

OBRABOTKAMETALLOV Vol. 26 No. 3 2024 248 MATERIAL SCIENCE 5. Olmedo D., Fernández M.M., Guglielmotti M.B., Cabrini R.L. Macrophages related to dental implant failure. Implant Dentistry, 2003, vol. 12, pp. 75–80. DOI: 10.1097/01.ID.0000041425.36813.A9. 6. Zhao L., Chu P.K., Zhang Y., Wu Z. Antibacterial coatings on titanium implants. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 2009, vol. 91, pp. 470–480. DOI: 10.1002/jbm.b.31463. 7. Tian J., Xu K., Hu J., Zhang S., Cao G., Shao G. Durable self-polishing antifouling Cu-Ti coating by a micronscale Cu/Ti laminated microstructure design. Journal of Materials Science & Technology, 2021, vol. 79, pp. 62–74. DOI: 10.1016/j.jmst.2020.11.038. 8. Zhang J.Q., Cao S., Liu Y., Bao M.M., Ren J., Li S.Y., Wang J.J. Tribocorrosion behavior of antibacterial Ti– Cu sintered alloys in simulated biological environments. Rare Metals, 2022, vol. 41, pp. 1921–1932. DOI: 10.1007/ s12598-021-01943-6. 9. Adamiak B., Wiatrowski A., Domaradzki J., Kaczmarek D., Wojcieszak D., Mazur M. Preparation of multicomponent thin fi lms by magnetron co-sputtering method: The Cu-Ti case study. Vacuum, 2019, vol. 161, pp. 419–428. DOI: 10.1016/j.vacuum.2019.01.012. 10. Jin X., Gao L., Liu E., Yu F., Shu X., Wang H. Microstructure, corrosion and tribological and antibacterial properties of Ti–Cu coated stainless steel. Journal of the Mechanical Behavior of Biomedical Materials, 2015, vol. 50, pp. 23–32. DOI: 10.1016/j.jmbbm.2015.06.004. 11. Wojcieszak D., Kaczmarek D.,AntosiakA., Mazur M., Rybak Z., RusakA., Szponar B. Infl uence of Cu–Ti thin fi lm surface properties on antimicrobial activity and viability of living cells. Materials Science and Engineering: C, 2015, vol. 56, pp. 48–56. DOI: 10.1016/j.msec.2015.06.013. 12. Zhu Y., Yan M., Zhang Q., Wang Q., Zhuo H. Eff ects of the prefabricated Cu-Ti fi lm on the microstructure and mechanical properties of the multiphase coating by thermo plasma nitriding on C17200 Cu alloy. Coatings, 2019, vol. 9, p. 694. DOI: 10.3390/coatings9110694. 13. Wang Z.Q., Wang X.R. Microstructure and fl ame-retardant properties of Ti-Cu coating on Tc11 prepared via electrospark deposition. Material Engineering and Mechanical Engineering: Proceedings of Material Engineering and Mechanical Engineering (MEES 2015). World Scientifi c, 2016, pp. 1283–1291. DOI: 10.1142/ 9789814759687_0144. 14. Radek N. Experimental investigations of the Cu-Mo and Cu-Ti electro-spark coatings modifi ed by laser beam. Advances in Manufacturing Science and Technology, 2008, vol. 32, pp. 53–68. 15. Kayali Yu., Yalçin M.C., Buyuksagis A. Eff ect of electro spark deposition coatings on surface hardness and corrosion resistance of ductile iron. Canadian Metallurgical Quarterly, 2023, vol. 62, pp. 483–496. DOI: 10.1080/0 0084433.2022.2119039. 16. Zhao H., Gao Ch., Guo Ch., Xu B., Wu X.Yu., Lei J.G. In-situ TIC-reinforced NI-based composite coatings fabricated by ultrasonic-assisted electrospark powder deposition. Journal of Asian Ceramic Societies, 2023, vol. 11, pp. 26–38. DOI: 10.1080/21870764.2022.2142368. 17. Burkov A.A., Pyachin S.A. Formation of WC–Co coating by a novel technique of electrospark granules deposition. Materials & Design, 2015, vol. 80, pp. 109–115. DOI: 10.1016/j.matdes.2015.05.008. 18. Burkov A.A. Production amorphous coatings by electrospark treatment of steel 1035 in a mixture of iron granules with CrMoWCBSi powder. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 4, pp. 19–30. DOI: 10.17212/1994-6309-2019-21.4-19-30. (In Russian). 19. Burkov A.A., Kulik M.A. Wear-resistant and anticorrosive coatings based on chrome carbide Cr7C3 obtained by electric spark deposition. Protection of Metals and Physical Chemistry of Surfaces, 2020, vol. 56, pp. 1217–1221. DOI: 10.1134/S2070205120060064. 20. Burkov A.A. One-stage deposition of Ti–Cu coatings by electric spark treatment of Ti6Al4V titanium alloy with an anode of copper and titanium granules. Fundamental’nye problemy sovremennogo materialovedenia = Basic Problems of Material Science (BPMS), 2023, vol. 20, pp. 372–380. DOI: 10.25712/ASTU.1811-1416.2023.03.010. (In Russian). 21. BurkovA.A., Chigrin P.G., Dvornik M.I. Electrospark CuTi coatings on titanium alloy Ti6Al4V: corrosion and wear properties. Surface and Coatings Technology, 2023, vol. 469, p. 129796. DOI: 10.1016/j.surfcoat.2023.129796. 22. Durdu S., Usta M., BerkemA.S. Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation. Surface and Coatings Technology, 2016, vol. 301, pp. 85–93. DOI: 10.1016/j.surfcoat.2023.129796. 23. Jamnapara N.I., Frangini S., Alphonsa J., Chauhan N.L., Mukherjee S. Comparative analysis of insulating properties of plasma and thermally grown alumina fi lms on electrospark aluminide coated 9Cr steels. Surface and Coatings Technology, 2015, vol. 266, pp. 146–150. DOI: 10.1016/j.surfcoat.2015.02.028.

RkJQdWJsaXNoZXIy MTk0ODM1