Wear resistance and corrosion behavior of Cu-Ti coatings in SBF solution

OBRABOTKAMETALLOV Vol. 26 No. 3 2024 249 MATERIAL SCIENCE 24. Campo K.N., de Lima D.D., Lopes É.S.N., Caram R. On the selection of Ti–Cu alloys for thixoforming processes: phase diagram and microstructural evaluation. Journal of Materials Science, 2015, vol. 50, pp. 8007– 8017. DOI: 10.1007/s10853-015-9367-4. 25. Fan Y., Fan J., Wang C. Formation of typical Ti–Cu intermetallic phases via a liquid-solid reaction approach. Intermetallics, 2019, vol. 113, p. 106577. DOI: 10.1016/j.intermet.2019.106577. 26. Bohórquez C.D., Pérez S.P., Sarmiento A., Mendoza M.E. Eff ect of temperature on morphology and wear of a Cu-Ti-TiC MMC sintered by abnormal glow discharge. Materials Research Express, 2020, vol. 7, p. 026501. DOI: 10.1088/2053-1591/ab6e3b. 27. Modestov A.D., Zhou G.D., Wu Y.P., Notoya T., Schweinsberg D.P. A study of the electrochemical formation of Cu(I)-BTA fi lms on copper electrodes and the mechanism of copper corrosion inhibition in aqueous chloride/ benzotriazole solutions. Corrosion Science, 1994, vol. 36, pp. 1931–1946. DOI: 10.1016/0010-938X(94)90028-0. 28. Rosalbino F., Scavino G. Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloridecontaining environment. Electrochimica Acta, 2013, vol. 111, pp. 656–662. DOI: 10.1016/j.electacta.2013.08.019. 29. Ding Y., Kong L., Lei W., Li Q., Ding K., He Y. Study on the technology of surface strengthening Ti–6Al–4V alloy by near-dry multi-fl ow channel electrode electrical discharge machining. Journal of Materials Research and Technology, 2024, vol. 28, pp. 2219–2234. DOI: 10.1016/j.jmrt.2023.12.133. 30. Guo S., LuY., Wu S., Liu L., He M., Zhao C., Lin J. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys. Materials Science and Engineering: C, 2017, vol. 72, pp. 631–640. DOI: 10.1016/j.msec.2016.11.126. 31. Alves A.C., Wenger F., Ponthiaux P., Celis J.P., Pinto A.M., Rocha L.A., Fernandes J.C.S. Corrosion mechanisms in titanium oxide-based fi lms produced by anodic treatment. Electrochimica Acta, 2017, vol. 234, pp. 16–27. DOI: 10.1016/j.electacta.2017.03.011. 32. Cao S., Zhang Z.M., Zhang J.Q., Wang R.X., Wang X.Y., Yang L., Zhang E.L. Improvement in antibacterial ability and cell cytotoxicity of Ti–Cu alloy by anodic oxidation. RareMetals, 2022, vol. 41, pp. 594–609. DOI: 10.1007/ s12598-021-01806-0. 33. Lu M., Zhang Z., Zhang J., Wang X., Qin G., Zhang E. Enhanced antibacterial activity of Ti-Cu alloy by selective acid etching. Surface and Coatings Technology, 2021, vol. 421, p. 127478. DOI: 10.1016/j. surfcoat.2021.127478. 34. Guidelines for drinking-water quality. World Health Organization, 2002. 35. Ren L., Yang K. Antibacterial design for metal implants. Metallic Foam Bone. Woodhead Publishing, 2017, pp. 203–216. DOI: 10.1016/B978-0-08-101289-5.00008-1. 36. Kaplan Y., Işıtan A. Tribological behavior of borided Ti6Al4V alloy under simulated body fl uid conditions. Acta Physica Polonica A, 2018, vol. 134, pp. 271–274. DOI: 10.12693/APhysPolA.134.271. 37. Shao J.Z., Li J., Song R., Bai L.L., Chen J.L., Qu C.C. Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/a(Ti) matrix coating produced by laser cladding. Rare Metals, 2020, vol. 39, pp. 304–31. DOI: 10.1007/s12598-016-0787-3. Confl icts of Interest The authors declare no confl ict of interest. © 2024 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1