OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 3 2024 Fig. 6. SEM photos of the worn surface of Cu-Ti coatings after wear testing in SBF solution: a – Cu10; b – Cu30; c – Cu50; d – Cu70; e – Cu90; f – Ti-6Al-4V а b c d e f Ta b l e 7 Composition of wear products on the surfaces of coatings and Ti-6Al-4V alloy Element Concentration, at.% Cu10 Cu30 Cu50 Cu70 Cu90 Ti-6Al-4V C 25.38 5.67 22.72 13.08 16.71 7.16 O 53.95 63.5 50.1 43.3 42.68 20.09 Al 0.47 0.19 0.33 4.37 P 0.07 0.07 0.08 S 0.1 0.19 0.12 0.14 0.11 Cl 0.22 0.59 0.41 0.18 0.35 0.32 Ti 1.59 12.28 11.99 37.90 26.03 63.87 V 0.53 0.87 3.2 Cr 0.22 0.7 0.4 0.16 0.37 Fe 18.02 12.61 8.43 0.39 9.86 0.88 Cu 0.38 3.02 5.62 3.93 3.24 W 0.07 0.44 0.14 0.22 Conclusions Copper-titanium coatings on titanium alloy blanks were prepared by the method of electric spark deposition using a non-localized electrode consisting of copper and titanium granules in different ratios. The copper concentration in the coatings monotonically increased with its content in the electrode. It is shown
RkJQdWJsaXNoZXIy MTk0ODM1