OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 3 2024 15. Kayali Yu., Yalçin M.C., Buyuksagis A. Effect of electro spark deposition coatings on surface hardness and corrosion resistance of ductile iron. Canadian Metallurgical Quarterly, 2023, vol. 62, pp. 483–496. DOI: 10.1080/0 0084433.2022.2119039. 16. Zhao H., Gao Ch., Guo Ch., Xu B., Wu X.Yu., Lei J.G. In-situ TIC-reinforced NI-based composite coatings fabricated by ultrasonic-assisted electrospark powder deposition. Journal of Asian Ceramic Societies, 2023, vol. 11, pp. 26–38. DOI: 10.1080/21870764.2022.2142368. 17. Burkov A.A., Pyachin S.A. Formation of WC–Co coating by a novel technique of electrospark granules deposition. Materials & Design, 2015, vol. 80, pp. 109–115. DOI: 10.1016/j.matdes.2015.05.008. 18. Burkov A.A. Production amorphous coatings by electrospark treatment of steel 1035 in a mixture of iron granules with CrMoWCBSi powder. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 4, pp. 19–30. DOI: 10.17212/1994-6309-2019-21.4-19-30. (In Russian). 19. Burkov A.A., Kulik M.A. Wear-resistant and anticorrosive coatings based on chrome carbide Cr7C3 obtained by electric spark deposition. Protection of Metals and Physical Chemistry of Surfaces, 2020, vol. 56, pp. 1217–1221. DOI: 10.1134/S2070205120060064. 20. Burkov A.A. One-stage deposition of Ti–Cu coatings by electric spark treatment of Ti6Al4V titanium alloy with an anode of copper and titanium granules. Fundamental’nye problemy sovremennogo materialovedenia = Basic Problems of Material Science (BPMS), 2023, vol. 20, pp. 372–380. DOI: 10.25712/ASTU.1811-1416.2023.03.010. (In Russian). 21. BurkovA.A., Chigrin P.G., Dvornik M.I. Electrospark CuTi coatings on titanium alloy Ti6Al4V: corrosion and wear properties. Surface and Coatings Technology, 2023, vol. 469, p. 129796. DOI: 10.1016/j.surfcoat.2023.129796. 22. Durdu S., Usta M., BerkemA.S. Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation. Surface and Coatings Technology, 2016, vol. 301, pp. 85–93. DOI: 10.1016/j.surfcoat.2023.129796. 23. Jamnapara N.I., Frangini S., Alphonsa J., Chauhan N.L., Mukherjee S. Comparative analysis of insulating properties of plasma and thermally grown alumina films on electrospark aluminide coated 9Cr steels. Surface and Coatings Technology, 2015, vol. 266, pp. 146–150. DOI: 10.1016/j.surfcoat.2015.02.028. 24. Campo K.N., de Lima D.D., Lopes É.S.N., Caram R. On the selection of Ti–Cu alloys for thixoforming processes: phase diagram and microstructural evaluation. Journal of Materials Science, 2015, vol. 50, pp. 8007– 8017. DOI: 10.1007/s10853-015-9367-4. 25. Fan Y., Fan J., Wang C. Formation of typical Ti–Cu intermetallic phases via a liquid-solid reaction approach. Intermetallics, 2019, vol. 113, p. 106577. DOI: 10.1016/j.intermet.2019.106577. 26. Bohórquez C.D., Pérez S.P., Sarmiento A., Mendoza M.E. Effect of temperature on morphology and wear of a Cu-Ti-TiC MMC sintered by abnormal glow discharge. Materials Research Express, 2020, vol. 7, p. 026501. DOI: 10.1088/2053-1591/ab6e3b. 27. Modestov A.D., Zhou G.D., Wu Y.P., Notoya T., Schweinsberg D.P. A study of the electrochemical formation of Cu(I)-BTA films on copper electrodes and the mechanism of copper corrosion inhibition in aqueous chloride/ benzotriazole solutions. Corrosion Science, 1994, vol. 36, pp. 1931–1946. DOI: 10.1016/0010-938X(94)90028-0. 28. Rosalbino F., Scavino G. Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloridecontaining environment. Electrochimica Acta, 2013, vol. 111, pp. 656–662. DOI: 10.1016/j.electacta.2013.08.019. 29. Ding Y., Kong L., Lei W., Li Q., Ding K., He Y. Study on the technology of surface strengthening Ti–6Al–4V alloy by near-dry multi-flow channel electrode electrical discharge machining. Journal of Materials Research and Technology, 2024, vol. 28, pp. 2219–2234. DOI: 10.1016/j.jmrt.2023.12.133. 30. Guo S., LuY., Wu S., Liu L., He M., Zhao C., Lin J. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys. Materials Science and Engineering: C, 2017, vol. 72, pp. 631–640. DOI: 10.1016/j.msec.2016.11.126. 31. Alves A.C., Wenger F., Ponthiaux P., Celis J.P., Pinto A.M., Rocha L.A., Fernandes J.C.S. Corrosion mechanisms in titanium oxide-based films produced by anodic treatment. Electrochimica Acta, 2017, vol. 234, pp. 16–27. DOI: 10.1016/j.electacta.2017.03.011. 32. Cao S., Zhang Z.M., Zhang J.Q., Wang R.X., Wang X.Y., Yang L., Zhang E.L. Improvement in antibacterial ability and cell cytotoxicity of Ti–Cu alloy by anodic oxidation. RareMetals, 2022, vol. 41, pp. 594–609. DOI: 10.1007/ s12598-021-01806-0. 33. Lu M., Zhang Z., Zhang J., Wang X., Qin G., Zhang E. Enhanced antibacterial activity of Ti-Cu alloy by selective acid etching. Surface and Coatings Technology, 2021, vol. 421, p. 127478. DOI: 10.1016/j. surfcoat.2021.127478.
RkJQdWJsaXNoZXIy MTk0ODM1