Comparative evaluation of roller burnishing of Al6061-T6 alloy under dry and nanofluid minimum quantity lubrication conditions

OBRABOTKAMETALLOV Vol. 26 No. 4 2024 73 TECHNOLOGY References 1. Rodríguez A., López de Lacalle L.N., Celaya A., Fernández A., Lamikiz A. Ball burnishing application for fi nishing sculptured surfaces in multi-axis machines. International Journal of Mechatronics and Manufacturing Systems, 2011, vol. 4, pp. 220–237. DOI: 10.1504/IJMMS.2011.041470. 2. Saff ar S., Eslami H. Increasing the fatigue life and surface improvement of AL7075 alloy T6 by using ultrasonic ball burnishing process. International Journal of Surface Science and Engineering, 2022, vol. 16 (3), pp. 181–206. DOI: 10.1504/IJSURFSE.2022.125438. 3. Somatkar A.A., Dwivedi R., Chinchanikar S. Enhancing surface integrity and quality through roller burnishing: a comprehensive review of parameters optimization, and applications. Communications on Applied Nonlinear Analysis, 2024, vol. 31 (1s), pp. 51–69. DOI: 10.52783/cana.v31.563. 4. Nguyen T.-T., Nguyen T.-A., Trinh Q.-H., Le X.-B., Pham L.-H., Le X.-H. Artifi cial neural network-based optimization of operating parameters for minimum quantity lubrication-assisted burnishing process in terms of surface characteristics. Neural Computing and Applications, 2022, vol. 34 (9), pp. 7005–7031. DOI: 10.1007/s00521-02106834-6. 5. Nguyen T.-T. Multi-response performance optimization of burnishing operation for improving hole quality. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, vol. 43 (12), p. 560. DOI: 10.1007/ s40430-021-03274-0. 6. Shirsat U., Ahuja B., Dhuttargaon M. Eff ect of burnishing parameters on surface fi nish. Journal of The Institution of Engineers (India): Series C, 2017, vol. 98, pp. 431–436. DOI: 10.1007/s40032-016-0320-3. 7. Kurkute V., Chavan S.T. Modeling and optimization of surface roughness and microhardness for roller burnishing process using response surface methodology for Aluminum 63400 alloy. Procedia Manufacturing, 2018, vol. 20, pp. 542–547. DOI: 10.1016/j.promfg.2018.02.081. 8. Patel K.A., Brahmbhatt P.K. Response surface methodology-based desirability approach for optimization of roller burnishing process parameter. Journal of the Institution of Engineers (India): Series C, 2018, vol. 99, pp. 729– 736. DOI: 10.1007/s40032-017-0368-8. 9. Prasad K.A., John M.R.S. Optimization of external roller burnishing process on magnesium silicon carbide metal matrix composite using response surface methodology. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, vol. 43 (7), p. 342. DOI: 10.1007/s40430-021-03069-3. 10. Tadic B., Todorovic P.M., Luzanin O., Miljanic D., Jeremic B.M., Bogdanovic B., Vukelic D. Using specially designed high-stiff ness burnishing tool to achieve high-quality surface fi nish. The International Journal of Advanced Manufacturing Technology, 2013, vol. 67, pp. 601–611. DOI: 10.1007/s00170-012-4508-2. 11. El-KhabeeryM.M., El-Axir M.H. Experimental techniques for studying the eff ects of milling roller-burnishing parameters on surface integrity. International Journal of Machine Tools and Manufacture, 2001, vol. 41 (12), pp. 1705–1719. DOI: 10.1016/S0890-6955(01)00036-0. 12. Okada M., Suenobu S., Watanabe K., Yamashita Y., Asakawa N. Development and burnishing characteristics of roller burnishing method with rolling and sliding eff ects. Mechatronics, 2015, vol. 29, pp. 110–118. DOI: 10.1016/j. mechatronics.2014.11.002. 13. Huang B., Kaynak Y., Sun Y., Jawahir I.S. Surface layer modifi cation by cryogenic burnishing of Al 7050T7451 alloy and validation with FEM-based burnishing model. Procedia CIRP, 2015, vol. 31, pp. 1–6. DOI: 10.1016/j. procir.2015.03.097. 14. Caudill J., Schoop J., Jawahir I.S. Correlation of surface integrity with processing parameters and advanced interface cooling/lubrication in burnishing of Ti-6Al-4V alloy. Advances in Materials and Processing Technologies, 2019, vol. 5 (1), pp. 53–66. DOI: 10.1080/2374068X.2018.1511215. 15. Rotella G., Rinaldi S., Filice L. Roller burnishing of Ti6Al4V under diff erent cooling/lubrication conditions and tool design: eff ects on surface integrity. The International Journal of Advanced Manufacturing Technology, 2020, vol. 106 (1), pp. 431–440. DOI: 10.1007/s00170-019-04631-z. 16. Kulkarni P., Chinchanikar S. A review on machining of nickel-based superalloys using nanofl uids under minimum quantity lubrication (NFMQL). Journal of the Institution of Engineers (India): Series C, 2023, vol. 104 (1), pp. 183–199. DOI: 10.1007/s40032-022-00905-w. 17. Kulkarni P., Chinchanikar S. Modeling turning performance of Inconel 718 with hybrid nanofl uid under MQL using ANN and ANFIS. Frattura ed Integrità Strutturale, 2024, vol. 18 (70), pp. 71–90. DOI: 10.1080/2374068X.2 024.2307103.

RkJQdWJsaXNoZXIy MTk0ODM1