Comparative evaluation of roller burnishing of Al6061-T6 alloy under dry and nanofluid minimum quantity lubrication conditions

OBRABOTKAMETALLOV TECHNOLOGY Vol. 26 No. 4 2024 noticeable when using NFMQL cutting conditions. Roundness error is signifi cantly aff ected by dry cutting speed and feed under NFMQL cutting conditions. ● The cutting speed of 357 rpm, feed of 0.17 mm/rev and four passes are found as the optimum parameters for roller burnishing of Al6061-T6 alloy to obtain the minimum surface roughness of 0.64 μm, maximum microhardness of 130.19 HV and minimum roundness error of 3.514 μm. References 1. Rodríguez A., López de Lacalle L.N., Celaya A., Fernández A., Lamikiz A. Ball burnishing application for fi nishing sculptured surfaces in multi-axis machines. International Journal of Mechatronics and Manufacturing Systems, 2011, vol. 4, pp. 220–237. DOI: 10.1504/IJMMS.2011.041470. 2. Saff ar S., Eslami H. Increasing the fatigue life and surface improvement ofAL7075 alloy T6 by using ultrasonic ball burnishing process. International Journal of Surface Science and Engineering, 2022, vol. 16 (3), pp. 181–206. DOI: 10.1504/IJSURFSE.2022.125438. 3. Somatkar A.A., Dwivedi R., Chinchanikar S. Enhancing surface integrity and quality through roller burnishing: a comprehensive review of parameters optimization, and applications. Communications on Applied Nonlinear Analysis, 2024, vol. 31 (1s), pp. 51–69. DOI: 10.52783/cana.v31.563. 4. Nguyen T.-T., Nguyen T.-A., Trinh Q.-H., Le X.-B., Pham L.-H., Le X.-H. Artifi cial neural network-based optimization of operating parameters for minimum quantity lubrication-assisted burnishing process in terms of surface characteristics. Neural Computing and Applications, 2022, vol. 34 (9), pp. 7005–7031. DOI: 10.1007/s00521-02106834-6. 5. Nguyen T.-T. Multi-response performance optimization of burnishing operation for improving hole quality. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, vol. 43 (12), p. 560. DOI: 10.1007/ s40430-021-03274-0. 6. Shirsat U., Ahuja B., Dhuttargaon M. Eff ect of burnishing parameters on surface fi nish. Journal of The Institution of Engineers (India): Series C, 2017, vol. 98, pp. 431–436. DOI: 10.1007/s40032-016-0320-3. 7. Kurkute V., Chavan S.T. Modeling and optimization of surface roughness and microhardness for roller burnishing process using response surface methodology for Aluminum 63400 alloy. Procedia Manufacturing, 2018, vol. 20, pp. 542–547. DOI: 10.1016/j.promfg.2018.02.081. 8. Patel K.A., Brahmbhatt P.K. Response surface methodology-based desirability approach for optimization of roller burnishing process parameter. Journal of the Institution of Engineers (India): Series C, 2018, vol. 99, pp. 729– 736. DOI: 10.1007/s40032-017-0368-8. 9. Prasad K.A., John M.R.S. Optimization of external roller burnishing process on magnesium silicon carbide metal matrix composite using response surface methodology. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, vol. 43 (7), p. 342. DOI: 10.1007/s40430-021-03069-3. 10. Tadic B., Todorovic P.M., Luzanin O., Miljanic D., Jeremic B.M., Bogdanovic B., Vukelic D. Using specially designed high-stiff ness burnishing tool to achieve high-quality surface fi nish. The International Journal of Advanced Manufacturing Technology, 2013, vol. 67, pp. 601–611. DOI: 10.1007/s00170-012-4508-2. 11. El-KhabeeryM.M., El-Axir M.H. Experimental techniques for studying the eff ects of milling roller-burnishing parameters on surface integrity. International Journal of Machine Tools and Manufacture, 2001, vol. 41 (12), pp. 1705–1719. DOI: 10.1016/S0890-6955(01)00036-0. 12. Okada M., Suenobu S., Watanabe K., Yamashita Y., Asakawa N. Development and burnishing characteristics of roller burnishing method with rolling and sliding eff ects. Mechatronics, 2015, vol. 29, pp. 110–118. DOI: 10.1016/j. mechatronics.2014.11.002. 13. Huang B., Kaynak Y., Sun Y., Jawahir I.S. Surface layer modifi cation by cryogenic burnishing of Al 7050T7451 alloy and validation with FEM-based burnishing model. Procedia CIRP, 2015, vol. 31, pp. 1–6. DOI: 10.1016/j. procir.2015.03.097. 14. Caudill J., Schoop J., Jawahir I.S. Correlation of surface integrity with processing parameters and advanced interface cooling/lubrication in burnishing of Ti-6Al-4V alloy. Advances in Materials and Processing Technologies, 2019, vol. 5 (1), pp. 53–66. DOI: 10.1080/2374068X.2018.1511215. 15. Rotella G., Rinaldi S., Filice L. Roller burnishing of Ti6Al4V under diff erent cooling/lubrication conditions and tool design: eff ects on surface integrity. The International Journal of Advanced Manufacturing Technology, 2020, vol. 106 (1), pp. 431–440. DOI: 10.1007/s00170-019-04631-z.

RkJQdWJsaXNoZXIy MTk0ODM1